
NET+Works with Green
Hills Programmer’s Guide

Operating system/version: 6.3
Part number/version: 90000723_B
Release date: March 2005
www.digi.com

NET+Works with Green
Hills Programmer’s Guide

©2006 Digi International Inc.

Printed in the United States of America. All rights reserved.

Digi, Digi International, the Digi logo, the Making Device Networking Easy logo, NetSilicon, a
Digi International Company, NET+, NET+OS and NET+Works are trademarks or registered
trademarks of Digi International, Inc. in the United States and other countries worldwide. All
other trademarks are the property of their respective owners.

Information is this document is subject to change without notice and does not represent a
committment on the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of, fitness or merchantability
for a particular purpose. Digi may make improvements and/or changes in this manual or in
the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are made
periodically to the information herein; these changes may be incorporated in new editions of
the publication.

Contents
C h a p t e r 1 : N E T + W o r k s I n t r o d u c t i o n ... 1

System components ... 2

NET+Works runtime software ... 2

HTML-to-C compiler .. 3

Advanced Web Server (AWS) PBuilder utility................................. 3

Address Configuration Executive (ACE).. 3

System requirements.. 4

C h a p t e r 2 : U s i n g t h e H T M L - t o - C C o m p i l e r 5

Overview .. 6

Web content.. 6

Static and dynamic content and forms processing 7

Preparing to use the HTML-to-C compiler 10

How the HTML-to-C compiler works .. 10

Using the HTML-to-C compiler.. 12

Creating a new project ... 13

Removing obsolete data .. 14

Adding or removing source files ... 14

Specifying the location of files .. 15

Generating C source files... 15

Setting or changing a project’s home page.................................. 15
Q Q Q Q Q Q Q v

Editing URL files .. 16

Opening the url.c file ... 16

Adding and deleting URLs .. 17

Editing a URL ... 17

Setting the user and password of a URL...................................... 18

C h a p t e r 3 : U s i n g t h e M I B M A N U t i l i t y ... 19

Overview ... 20

Terms and concepts .. 20

SNMP ... 20

Scalar MIB objects ... 21

MIB tables ... 21

Traps... 22

Action routines ... 23

Implementing a MIB: an example ... 23

Converting an SNMP MIB into C code .. 23

Step 1: Using SMICng .. 23

Step 2: Using MIBMAN ... 24

Step 3: Final integration.. 36

Writing action routines .. 37

Action routines for scalar objects... 37

Action routines for tables .. 42

SNMP OID and string index values ... 51

C h a p t e r 4 : U s i n g t h e A d v a n c e d W e b S e r v e r P B u i l d e r
U t i l i t y .. 53

Overview ... 54

The PBuilder utility.. 54

About the Advanced Web Server Toolkit documentation.................. 55

Running the PBuilder utility... 55

Linking the application with the PBuilder output files 57

security.c file .. 57

cgi.c and file.c files ... 57
vi Q Q Q Q Q Q Q

Comment tags... 57

Creating Web pages .. 58

AWS custom variables ... 58

Data types .. 60

Displaying variables ... 60

Changing variables... 61

Security.. 63

Exceptional cases .. 64

Controlling the MAW module ... 64

Setting the semaphore timeout ... 64

Array subscripts .. 65

Error handling .. 66

Building the application .. 67

Phrase dictionaries and compression ... 67

Maintaining and modifying Web content.. 68

Sample applications .. 68

C h a p t e r 5 : T r o u b l e s h o o t i n g .. 69

Diagnosing errors ... 70

Diagnosing a fatal error... 70

Diagnosing an unexpected exception... 70

Reserializing a development board .. 71

Observing the LEDs .. 71

Preparing to reserialize... 72

Assigning a MAC address to the NET+Works board.......................... 72

Restoring the contents of flash ROM... 74

Step 1: Configure the development board and the MAJIC................. 74

Step 2: Building the bootloader ... 75

Step 3: Building the application image and starting naftpapp 75

Step 4: Sending rom.bin to the development board 75

Step 5: Verifying the boot ROM image on the development board 76
Q Q Q Q Q Q Q v i i

Using This Guide
Review this section for basic information about this guide, as well as for general
support contact information.

About this guide

This guide describes NET+OS 6.3 with Green Hills Tools and how to use it as part of
your development cycle. Part of the NET+Works integrated product family, NET+OS
is a network software suite optimized for the NET+ARM.

Software release

This guide supports NET+OS 6.3. By default, this software is installed in the
C:/netos63_ghs/ directory.

Who should read this guide

This guide is for software engineers and others who use NET+Works for NET+OS.

To complete the tasks described in this guide, you must:

� Be familiar with installing and configuring software.

� Have sufficient user privileges to do these tasks.

� Be familiar with network software and development board systems.
Q Q Q Q Q Q Q i x

Conventions used in this guide

This table describes the typographic conventions used in this guide:

What’s in this guide

This table shows where you can find information this guide:

Related documentation

� NET+Works Quick Installation Guide describes how to install the hardware.

� Green Hills MULTI 2000 IDE Licensing Information describes how to request a
license key.

� NET+Works with Green Hills Tutorial provides a brief, hands-on exercise.

This convention Is used for

italic type Emphasis, new terms, variables, and document titles.

bold, sans serif type Menu commands, dialog box components, and other
items that appear on-screen.

Select menu name menu
selection name

Menu commands. The first word is the menu name; the
words that follow are menu selections.

monospaced type File names, pathnames, and code examples.

To read about See

The NET+Works components Chapter 1, “NET+Works Introduction”

Converting HTML and related Web page
files to C code

Chapter 2, “Using the HTML-to-C Compiler”

Using the MIBMAN utility to implement
management information bases (MIBs)

Chapter 3, “Using the MIBMAN Utility”

Using the PBuilder utility to convert HTML
Web pages into compilable C source code

Chapter 4, “Using the Advanced Web Server
PBuilder Utility”

Diagnosing problems; reserializing a
development board

Chapter 5, “Troubleshooting”
x Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

� NET+Works with Green Hills BSP Porting Guide describes how to port the board
support package (BSP) to a new hardware application.

� The NET+Works online help describes the application program interfaces (APIs)
that are provided with NET+OS. By default, the online help is located in:
C:\netos63_ghs\Documentation

For information about third-party products and other components, review the
documentation CD-ROM that came with your development kit.

For information about the processor you are using, see your NET+Works
hardware documentation.

Documentation updates

Digi occasionally provides documentation updates on the Web site. Be aware that
if you see differences between the documentation you received in your
NET+Works package and the documentation on the Web site, the Web site
content is the latest information.

Customer support

To get help with a question or technical problem with this product, or to make
comments and recommendations about our products or documentation, use the
contact information listed here:

� United States telephone: 1 877 912-3444

� International telephone: 1 952 912-3444

� email: digi.info@digi.com

� Web site: http://digi.com
www.d i g i . c om Q Q Q Q Q Q Q x i

NET+Works Introduction
C H A P T E R 1

This chapter provides an overview of NET+Works.
Q Q Q Q Q Q Q 1

Sys t em componen t s
Overview

The NET+Works products offer an embedded solution for hardware and
networking software that are being implemented into product designs.

NET+Works is designed as an alternative to a PC for products that must be
connected to Ethernet for Transmission Control Protocol (TCP) access and for
Internet/Intranet access.

The NET+Works package includes:

� A NET+Works processor

� A development board and board support package

� If you are using a hardware debugger, either a MAJIC probe or a Raven
debugger

� The networking firmware

� The object code with application program interfaces (APIs)

� Development tools

� Sample code

� Documentation

For information about the NET+ARM devices, see the hardware documentation.

System components

This section describes the components that make up the NET+Works software.

NET+Works runtime software

NET+Works software provides the building blocks to help you create your custom
applications. You create your application with calls to APIs for:

� The board support package (BSP)

� ThreadX RTOS kernel

� Basic Internet protocols

� Higher-level protocols and services
2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

NET+Work s I n t r o duc t i on
Board support package

The NET+Works BSP is a collection of ARM object code and C source-code drivers
and bootloader. The BSP initializes hardware and software, and it provides power-
on self test (POST).

The BSP includes a set of APIs that you use to incorporate device peripheral
functionality into your application. In addition, the BSP provides the drivers for
your NET+ARM processor or Digi Connect module development board, including
Ethernet, Serial, SPI, Flash, USB host, USB device, LCD, PCI/CardBus, and others.

ThreadX RTOS kernel

The RTOS is based on a high-speed picokernel architecture. ThreadX helps you
manage complex event synchronization and memory using threads, queues,
application timers, semaphores, and event flags.

HTML-to-C compiler

The toolkit provides a compiler that translates your HyperText Markup-Language
(HTML) code into C code. You can then compile the C code as part of the project,
which allows you to create the pages your menu system needs to perform the tasks
necessary for your device. Sample code also is provided.

Advanced Web Server (AWS) PBuilder utility

Using the PBuilder utility, you create or maintain Web pages and recomplile the
application program to generate updated images. The PBuilder provides support for
HTML, multiple Web object sources, object compression, and advanced security.

Address Configuration Executive (ACE)

NET+Works provides services such as the ACE, which lets you acquire IP parame-
ters at startup from multiple prioritized sources, including BOOTP, RARP, Auto IP,
and others.
www.d i g i . c om Q Q Q Q Q Q Q 3

Sys t em r equ i r emen t s
System requirements

To run NET+Works with Green Hills, your system must meet these requirements:

� A minimum of a 700 MHz Pentium processor and 256 MB of RAM. A 1.4 GHz
Pentium processor with 512 MB of RAM is recommended.

� A 256-color display, at a minimum resolution of 1024x768. A minimum
resolution of 1280x1024 is recommended.

� An Ethernet connection.

� 1000 MB of free disk space per installation. If an older version of MULTI is
already installed on your machine, install this version in a different directory.
If you are installing to a drive other than your primary Windows drive, you also
must have at least 10 MB available on the primary drive for temporary files
and DLLs.

� A CD-ROM drive.

You need this software installed on your system:

� Internet Explorer 3.01 or later (to view online help)

� Microsoft Windows 2000 or XP
4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Using the HTML-to-C
Compiler
C H A P T E R 2

This chapter describes the HTML-to-C compiler, which you use to convert HTML
and related Web page files to C code.
Q Q Q Q Q Q Q 5

Ove r v i ew
Overview

This chapter describes the HTML-to-C Compiler, which is one of two Web authoring
tools supplied with NET+Works. The HTML-to-C Compiler allows you to develop
simple web pages.

Another web authoring tool, the Advance Web Server, allows you to create more
sophisticated Web content and provides a way to translate web pages into foreign
languages. For more information about the Advanced Web Server, see Chapter 4.

The HTML-to-C compiler converts HyperText Mark-up Language (HTML) and related
Web page files to standard C code so you can compile and link the Web pages for
an application.

The HTML-to-C compiler provides an easy way to integrate Web pages and content
into the Web server. Components converted to C code are easily integrated into
NET+Works software applications.

The next sections provide background information about HTML and describe how
to use the HTML-to-C compiler.

Web content

In response to HyperText Transport Protocol (HTTP) requests from Web browsers,
devices send Web content, which consists of

� HTML pages

� Images (such as .gif and .jpeg files)

� Java applets

� Audio files

To incorporate Web content into an embedded device, you first build an HTTP server
into the device by using the application program interfaces (APIs) provided with
NET+Works (described in the online help). The server processes HTTP requests and
responds with Web content.
6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e HTML - t o -C Comp i l e r
The next step incorporates the Web content into the HTTP server. Commercial Web
servers installed on UNIX or Windows NT systems have storage disks with large file
systems. Incorporating Web content is fairly routine because pages and images are
added to an existing directory, making the files Web-accessible. Embedded devices
normally have read-only memory (ROM) without a file system. The Web content in
such cases must be incorporated directly into the embedded device application
stored in ROM.

When you write HTML from scratch, you develop pages by adding HTML markup tags
to the text content, using either a text editor or Web authoring tool. You can add the
same pages to an embedded device by writing application code to physically return
an HTML page. The page is stored in a large character buffer in the device and
returned through a network API such as sockets.

As tools for generating HTML pages become more advanced, webmasters do not
generate HTML pages by hand. Web authoring tools are more efficient and reduce
the amount of typing needed in markup tags.

Static and dynamic content and forms processing

Embedded devices must be able to incorporate static content, dynamic content,
and forms processing into the embedded HTTP server source code.

The HTML-to-C compiler automatically converts Web content into application
source code:

� Static pages are converted into the necessary program calls to send back
HTML, image, and applet content that does not change over time. Nothing
needs to be added after the page is converted. Static pages are a small part of
the content provided by a Web server.

� Dynamic content, which changes over time, is necessary for status reporting.
This type of content has proprietary non-HTML markup tags inserted with an
HTML editor into the HTML source code. The HTML-to-C compiler recognizes
these tags and produces shell routines and calls to the routines in the
application source code. The embedded designer is then responsible for
implementing the routines so that the appropriate dynamic content is
returned when the routines are called.

� Forms processing, which accepts user input and acts on it, also is necessary
for making configuration changes in an embedded device.
www.d i g i . c om Q Q Q Q Q Q Q 7

Web con t en t
An HTML generation or Web authoring tool does not solve the problem of providing
dynamic content or forms processing. Application code in the commercial Web server
(written in PERL, C++, or Java) is necessary for these types of Web content.

The HTML-to-C compiler also recognizes HTML form tags and adds the shell routines
to be called when forms data is sent back to the embedded Web server.

The embedded Web server typically has an API that makes it easy to retrieve the
common gateway interface (CGI) data supplied by the browser in response to a
forms submission. The embedded designer is responsible for filling in the shell
routine with the code necessary to handle the data and send back the reply.

Dynamic content example

Sometimes you want a Web page to look different every time it is accessed. For
example, you may want to write a page that provides weather or traffic reports.
Dynamic content is useful in such a case. All you have to do is to embed the _NZZA_
tag into your HTML file. The HTML-to-C compiler understands this tag and
generates an empty routine at the end of the generated C file.

This example shows a portion of a Web page that reports the temperature at
Logan Airport:
<h1> The temperature at Logan is _NZZA_get_temp </h1>

This is translated into statements:

HSSend (handle, “<h1> The temperature at Logan is”);

na_get_temp(handle);

HSSend (handle, “</h1>”);

Note that _NZZA_get_temp is being converted into the na_get_temp function call,
which is located at the end of the file:
void na_get_temp(unsigned long handle)

{

}

You need to add real code to get and format the temperature, and then send it back
to the browser. For example:

void na_get_temp(unsigned long handle)
{

char buf[100];

int temperature;

temperature = get_airport_temp();
8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e HTML - t o -C Comp i l e r
sprintf (buf, “%4d”, temperature);

HSSend (handle, buf);

}

Input form example

One use of an embedded Web server is collecting data (for example, configuration
information) from a user. The easiest way to do this is with an input form. The HTTP
Server library API HSGetValue is used to capture data collected in this form.

To use forms, you need to include an action field in your form; for example:

<FORM ACTION=“ip_config” method =“POST”>

This field allows the HTML-to-C compiler to generate an empty function that must
be filled in to collect the data sent from the browser. Post_ is prefixed to the name
of the action.

The generated function name must be a valid C identifier, so your action name
must not contain any illegal character s. For example, Post_ip_config is added
at the end of the file:

void Post_ip_config (unsigned long handle)

{

}

To extract data sent with the form, use HSGetValue, as shown next:

void Post_ip_config (unsigned long handle)

{

char ipaddr[32];

/* assume the data is a text input, with name

attribute set to IP_ADDR */

HSGetValue (handle, “IP_ADDR”, ipadddr, 32);

…

/* at this point, whatever the user

input will be stored in ipaddr */

}

www.d i g i . c om Q Q Q Q Q Q Q 9

Web con t en t
Preparing to use the HTML-to-C compiler

The file name of an HTML uniform resource locator (URL) is its full URL name.
Because slash (/) is not a valid character for a file name, slashes are converted
to underscores (_). For example, /abc/def.html is generated as _abc_def.c.

To incorporate Web content into an embedded device, you first build an HTTP
server into the device using the APIs provided with NET+Works.

To build an HTTP server into a device:

1 Create Web pages by using an HTML editor.

2 Use the HTML-to-C compiler to convert the Web pages into C code.

3 If the Web pages contain dynamic content or forms, add your own code to the
generated empty C routines.

4 Put all your C source files into your application’s project.gpj file.

How the HTML-to-C compiler works

The HTML-to-C compiler recognizes two file types:

� Text files. Any file with an extension of .html, .htm, or .txt. A text file
causes the compiler to generate a .c file with a similar file name.

� Binary files. All binary files are converted and stored in the bindata.c file.
All the URL information, including security, is stored in the url.c file.
The file names bindata.c and url.c are default names you can change.

For example, assume your Web server contains four files — home.htm, x.htm,
y.jpg, and z.gif — and you want to organize your Web hierarchy (URLs) like
this:

/home.htm

/x.htm

/images/y.jpg

/images/z.gif

/~John/home.htm

/~John/y.jpg

These C files are generated:

� _home.c (from url /home.htm)

� _x.c (from url /x.htm)
1 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e HTML - t o -C Comp i l e r
� _~John_home.c (from url /~John/home.htm)

� bindata.c (contains data for y.jpg and z.gif)
� url.c

These entries are added to the URL table in the url.c file:

URLTableEntry URLTable[] = {

“/home.htm”, 1, Send_function_0, (HSTypeFnHtml)HSTypeHtml, 0,
Unprotected,

“/~John/home.htm”, 1, Send_function_1, (HSTypeFnHtml)HSTypeHtml, 0,
Unprotected,

“/~John/y.jpg”, 0, Send_function_2, (HSTypeFnBinary)HSTypeJpeg,
453, Unprotected,

“/images/y.jpg”, 0, Send_function_2,
(HSTypeFnBinary)HSTypeJpeg, 453, Unprotected,

“/images/z.gif”, 0, Send_function_3, (HSTypeFnBinary)HSTypeGif,
499, Unprotected,

“/x.htm”, 1, Send_function_5, (HSTypeFnHtml)HSTypeHtml, 0,
Unprotected,

NULL /* last entry MUST be NULL */

};

Although there is only one home.htm file, two files are generated because two
URLs (home.htm and /~John/home.htm) refer to it. This lets you use different
code to serve the same page (home.htm) under different absolute URLs.

Binary data, however, is treated differently because it does not need to be
customized. Only one copy of the data is stored in bindata.c for y.jpg, even
though it is referred to in both /~John/y.jpg and /images/y.jpg.

The URL table is used in the AppSearchURL function. When a user clicks a URL link
from a Web browser, the Web server does a search on the URL table. If the server
finds the entry for the URL, it calls the corresponding function (for example,
Send_function_1) to send back the page.

Here is an example of the Send_function_1 in the file _~John_home.c function:
void Send_function_1(unsigned long handle)
{

HSSend (handle, “<html>\n”);
HSSend (handle, “\n”);
HSSend (handle, “<head>\n”);

HSSend (handle, “<meta http-equiv=\”Content-Type\“\n”);
HSSend (handle, “content=\”text/html; charset=iso-8859-

1\“>\n”);
www.d i g i . c om Q Q Q Q Q Q Q 11

Us i ng t he HTML - t o -C comp i l e r
HSSend (handle, “<meta name=\”GENERATOR\

“content=\”Microsoft FrontPage Express 2.0\“>\n”);

HSSend (handle, “<title>John’s Home Page</title>\n”);
HSSend (handle, “</head>\n”);
HSSend (handle, “\n”);

HSSend (handle, “<body bgcolor=\”#FFFFFF\“>\n”);
HSSend (handle, “\n”);
HSSend (handle, “<h3>Welcome to John’s Home </h3>\n”);

HSSend (handle, “\n”);
HSSend (handle, “</body>\n”);
HSSend (handle, “</html>\n”);

}

Using the HTML-to-C compiler

Files for the same Web server application are organized as a project. A project file
has a file extension of .web.

To start the HTML-to-C compiler:

1 Select Start Programs netos63_ghs HTML-to-C Compiler.
The HTML to C dialog box opens:

2 Do one of these steps:

– To open a project that appears in the list, select the project from the
list and click Open Selected.

– To open a project that does not appear in the list, click Open Others,
then locate and select the project.

– To create a new project, click New Project, then enter a name and
select a location for the project.
1 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e HTML - t o -C Comp i l e r
This dialog box opens:

From this dialog box, you can:

� Create a new project.

� Remove obsolete data.

� Specify locations for generated C files and names for binary data and URL files.

� Generate C source files.

� Open and edit the url.c file.

� Set or change the project’s home page.

Creating a new project

To create a new project:

1 From the main dialog box, click the folder icon in the Source section.

2 Enter a name and select a location for the new project.

File for
managing
URLs

Directory for File for
File for binary data

Directory for
generated C
files

File for managing
URLs

Add files
Remove files

Create a new
project file
www.d i g i . c om Q Q Q Q Q Q Q 13

Us i ng t he HTML - t o -C comp i l e r
Removing obsolete data

Removing obsolete data from a project file reduces compilation time. Use caution
when you remove files; you may need the data for troubleshooting.

Be aware that removing data here does not delete the entries for the removed data
in the URL table. You must use Edit URL file to remove the data from the table.

To remove obsolete data from a file:

1 From the main dialog box, click Remove Bin data.

The Remove Binary Data dialog box opens, and displays the names of all
binary files in the bindata.c file:

2 Select one or more files to delete from the list, and click Remove.

Adding or removing source files

You can add or remove source files at any time.
1 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e HTML - t o -C Comp i l e r
To add a source file:

1 In the Source section of the main dialog box, locate and select the file to
add to your project.

2 Click the right arrow.

To remove a source file:

1 In the Source section of the main dialog box, locate and select the file to
remove from your project.

2 Click the left arrow.

Specifying the location of files

From the main dialog box, you can specify the location for the generated C files,
and the names of the URL and binary data files, as described here:

� To specify the directory in which to put the generated C files, enter the path
name in the Target Directory input box.

� To specify a file name for the URL file, enter the name in the URL file input
box. The default name is url.c.

� To specify a file name for the binary data file, enter the name in the Binary
data file name input box. The default name is url.c.
If your project does not have any binary files, you do not need to include
this file in your project.jpg file.

Generating C source files

From the main dialog box, you can generate C source files in two ways:

� To generate only the files that have changed since the last build, click Build.

� To generate all files, click Build All.

Setting or changing a project’s home page

The home page is the page that appears in the browser when you type only the IP
address of the server. The URL of a home page is always a forward slash (/).
www.d i g i . c om Q Q Q Q Q Q Q 15

Ed i t i n g URL f i l e s
To set or change the home page of a project:

1 From the main dialog box, click Home Page.

The Set Home Page dialog box opens:

2 Select the URL of the page you want to use as home page and click
Set Home.

If you do not want to specify a home page, click No Home Page.

Editing URL files

The url.c file contains the URL table, from which you can:

� Add or delete entries.

� Edit entries.

� Set or change security realms.

Opening the url.c file

To open the url.c file, from the main dialog box, click Edit URL file. The Edit
URL file dialog box opens:
1 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e HTML - t o -C Comp i l e r
Adding and deleting URLs

To add a new URL:

1 From the Edit URL file dialog box, click New.

The Edit URL dialog box opens.

2 Provide the necessary information, and click OK.

To delete a URL:

1 From the Edit URL file dialog box, select the URL to delete.

2 Click Remove.

Be aware that the deletion happens immediately; you do not get a prompt
to confirm the deletion.

Editing a URL

To edit a URL:

1 From the Edit URL file dialog box, select the URL you want to edit.

2 Click Edit.

The Edit URL dialog box opens.

3 Make the changes you want, and click OK.
www.d i g i . c om Q Q Q Q Q Q Q 17

Ed i t i n g URL f i l e s
Setting the user and password of a URL

The HTTP server supports the basic access authentication scheme in the HTTP
protocol. The combination of the username, password, and list of Web pages is
a realm. You can create up to eight realms.

You must set up a security table before you start the HTTP server.

To set up or change realm information:

1 From the Edit URL file dialog box, click Set Security Realms.

The Security Table dialog box opens:

2 For each realm, type the realm name, user name, and password, and
then click OK.
1 8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Using the MIBMAN
Utility
C H A P T E R 3

This chapter describes the MIBMAN utility, which you use to implement
management information bases (MIBs).
Q Q Q Q Q Q Q 19

Ove r v i ew
Overview

MIBMAN is a utility that translates Simple Network Management Protocol (SNMP)
Management Information Bases (MIBs) into C code that contains:

� Templates for action routines that you implement

� Management API declarations for MIB objects that correspond to management
variables

You control which action routines and management variable declarations are
generated through configuration files.

This chapter describes how to convert an SNMP MIB into C code and how to write
action routines.

Terms and concepts

The next sections provide some terminology you need to become familiar with The
next sections provide some terminology to be familiar with as you use MIBMAN.

SNMP

SNMP, which defines a system for managing network devices, is implemented in
multiple modules. SNMP consoles run on network workstations and provide the user
interface. SNMP agents run on managed devices and handle communications with
remote SNMP consoles. When a console sends a request to an agent, the agent
decodes the request and calls subroutines in the managed device that handles the
request. You implement the subroutines, which are called action routines.

A MIB defines the view of a managed device that the device’s agent presents to
an SNMP console.

The MIB defines a set of objects the console can read and write. These objects
can either correspond to variables that exist on the device or be synthesized by
the agent:

� MIB objects that represent variables that exist are called real objects.

� MIB objects that do not exist are called virtual objects.
2 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
For example, a MIB might define one object that is the count of Ethernet packets
received so far, and another object that indicates the health of the system. The
count of Ethernet packets received is probably stored in a real variable. On the other
hand, the agent can determine the health of the system on-the-fly by examining the
state of several system variables and processes.

Scalar MIB objects

A scalar object represents a single item with a simple type. If a scalar object is
real, MIBMAN can generate most of the code needed to implement it.

You can create a declaration for the variable in the management API and use
generic action routines to read and write the variable. Then you can have the
application set an initial value for the variable and update it as necessary.

MIBMAN cannot always use generic action routines. For example, a MIB object could
represent the state of an LED, and special purpose action routines might be needed
to turn the LED on and off when a user changes the value of the object. In such a
case, you can configure MIBMAN to generate templates for the action routines and
a declaration for a management variable to represent it. If the object is virtual,
you can use MIBMAN to generate templates for the action routines without
generating a management variable declaration.

MIB tables

You can arrange MIB objects in tables. A table is a set of MIB objects repeated in
multiple rows. Objects in a row are columnar objects. Columnar objects all have
simple types, like scalar objects. An SNMP table is similar to an array of C
structures, where each row represents a C structure, and each columnar object
represents a field in the structure. Like scalar objects, tables can represent either:

� Real tables of information stored in memory

� Virtual objects that the agent creates on-the-fly

Tables are read and written one columnar object at a time. When a columnar object
is accessed, the object is identified with:

� An object identifier (OID) that determines which columnar object in the row is
being accessed

� An index that determines which row in the table is being accessed
www.d i g i . c om Q Q Q Q Q Q Q 21

Te rms and concep t s
Although MIBs describe the elements that make up a table index, they do not
describe how the index works; you implement the table’s indexing scheme. For
more information, see the comments in the MIB and the RFCs that describe
the MIB.

Tables can have relationships with other tables; for example:

� One table can expand another table by defining additional columnar objects.
In this case, the two tables have a one-to-one relationship.

� One table can be a different view of another table. For example, one table
might consist of the same rows in another table sorted into a different order.

� One table can be a sub-table of another. Implementing this relationship
requires complex indexing schemes.

These relationships can cause the fate of rows in one table to affect rows in another
table. For example, assume one table expands another. When a row in one table is
deleted, the corresponding row in the other table also must be deleted. These types
of relationships, which you implement, are not described by the MIB, but in
comments in either the MIB or the RFCs that describe the MIB.

MIBMAN can create management variable declarations and action routine templates
for MIB tables that represent real tables in memory. You must initialize the tables and
update the data in them as necessary. You also must complete the action routines by
coding the table’s indexing scheme and fate relationships to other tables. If the table
is virtual, MIBMAN can generate templates for its action routines.

Traps

A trap is a message that an agent sends to a console when certain events occur.
Although the contents of traps are defined in MIBs, the MIBs do not specify the
events that cause the agent to send the trap. These events are explained by
comments in the MIB and in the RFC that describes the MIB.

You can use MIBMAN to generate a set of data structures that applications use to
generate and send traps.
2 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
Action routines

Action routines are functions that an SNMP agent calls to read or write MIB objects.
MIBMAN generates templates of these functions that you complete to implement
the MIB. The agent passes parameters to the functions that identify which object is
being accessed, and the functions perform the operation and return the result.

Implementing a MIB: an example

namib, a sample application on the NET+Works installation CD, demonstrates how
to implement a MIB. The sample MIB allows you to read and change the state of the
LED on the board from a MIB browser. namib also demonstrates how to implement a
MIB with tables.

Converting an SNMP MIB into C code

To convert an SNMP MIB into C code, you use this general procedure:

1 Use a MIB compiler to convert the MIB definition into an intermediate file.

To compile the MIBs, you can use the SMICng MIB compiler. SMICng, an
industry-standard compiler, is shipped with the SNMP agent.

2 Run MIBMAN to convert the intermediate file generated by SMICng into three
C source files.

These source files contain the C variable definitions and action routine
templates needed to implement the MIB.

3 Do the final integration.

The next sections provide details about the three steps.

Step 1: Using SMICng

Because the developers of SNMP tried to design a format for SNMP MIB definitions
that would be readable by both machines and people, MIB definitions are difficult
for anyone or anything to read. The SMICng compiler, however, converts a MIB
definition into a form that is easier for software to read.

For more information about SMICng, see the SMICng online documentation.
www.d i g i . c om Q Q Q Q Q Q Q 23

Conve r t i ng a n SNMP M IB i n t o C code
Here are the basic steps for using SMICng:

1 Strip off all extraneous text.

MIB definitions are usually contained within text files (RFCs) that contain
other text besides the MIB definition itself. If the MIB uses definitions
from other MIBs, you also need to clean up the text files that contain the
definitions for these MIBs.

2 Create an include file for SMICng that lists all the MIBs used by the one that
is being processed.

Include the MIB itself as the final file.

3 Run SMICng with this command line:

smicng -z -cm yourMib.inc > yourMib.out

where:

– yourMib.inc is the name of the include file you created in step 2 of this
procedure.

– yourMib.out is the name of the intermediate file the compiler creates.

Step 2: Using MIBMAN

The MIBMAN utility operates on the intermediate files that SMICng creates. MIBMAN
accepts up to four arguments, as shown here:

MIBMAN list-file configuration-directory output-directory var-filename

where:

� list-file is the file that contains a list of intermediate files generated by
SMICng.

� configuration-directory is the directory in which configuration files are
located.

� output-directory is the directory in which output files are generated.

� var-filename is the file that MIBMAN creates to contain a list of the variables
defined by the MIB and their OIDs.

The list-file argument is required; the other three arguments are optional. If
you do not specify the optional arguments, MIBMAN uses the current directory and
does not generate a list of MIB variables. In addition, the list-file must list the
MIB files so that MIBs that have dependencies are listed after the MIBs that resolve
the dependencies.
2 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
For example, assume RFC1213-MIB is being processed. This MIB depends on items
defined in RFC1155-MIB and RFC1212-MIB. So, a list file for RFC1213-MIB would be:

RFC1155-MIB.OUT

RFC1212-OUT.OUT

RFC1213-OUT.OUT

Generated files

MIBMAN generates two C files and a header file (.h) for each MIB it processes that
defines variables or traps. Here are the naming conventions:

� By default, the name of the MIB module determines file names.

� MIBMAN converts the MIB module name into legal Windows file names by
changing hyphens and periods in the name into underscores and appending the
extensions .c and .h.

� The suffix Action is appended to the template file name.

� If the module name starts with a digit, an underscore is added to the
beginning of the file name.

One C file —the definition file — contains the definitions for variables and structures
that the management API and the SNMP agent use, including:

� An array of manVarType elements used to create the variables in the
management API database

� An array of struct variable elements used to register the variables with the
SNMP agent

� Information about SNMP traps that is needed to implement the traps

The other C file (the template file) contains templates for action routines you use
to implement the MIB.

The header file contains declarations for functions and variables defined in the two
C files, including declarations for:

� The manVarType and struct variable arrays defined in the definition file

� The action routine templates in the action file that read variables

� The constants needed to implement the action routines
www.d i g i . c om Q Q Q Q Q Q Q 25

Conve r t i ng a n SNMP M IB i n t o C code
By default, MIBMAN generates the C code by:

� Creating management variables to represent all scalar objects

� Using generic action routines to access all scalar objects

� Creating management table variables to represent all MIB tables

� Creating templates or action routines that read and write the tables

None of the management variables is protected by semaphores. Indexing for
management table variables is left undefined. You can change these default
settings through a configuration file.

Data types

SNMP data types are represented by similar management variable data types, as
shown in this table:

Tables

MIBMAN generates code to register tables with the management API by using the
MAN_TABLE_TYPE data type. Individual rows are represented as C structures where
each columnar element is represented as a field in the structure.

These SNMP data types Are represented as

Textual conventions, octet strings, and
opaque objects

MAN_OCTET_STRING_TYPE variables.

INTEGER and Integer32 INT32 types.

Unsigned32, Gauge, Gauge32,
Counter, Counter32, and TimeTicks

WORD32 types.

Counter64 WORD64 type.

OBJECT IDENTIFIER Arrays of 129 WORD32 elements. The length of the
OID is encoded in the last element of the array.

IPaddress and NetworkAddress An array of four WORD8 elements.

BITS Octet strings in which each element contains 8 bits.
SNMP bit label 0 is the least significant bit in the
first byte of the string. The number of bit labels
defined in the MIB determines the string’s length.
2 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
In the next example, a table is defined with two integer objects and a DisplayString
object. A row in the table is represented as a C structure with two INT32 fields and a
MAN_OCTET_STRING_TYPE field.

ifTable OBJECT-TYPE

SYNTAX SEQUENCE OF IfEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

 "A list of interface entries."

 ::= { interfaces 2 }

ifEntry OBJECT-TYPE

 SYNTAX IfEntry

 ACCESS not-accessible

 STATUS mandatory

 DESCRIPTION

 "An interface entry."

 INDEX { ifIndex }

 ::= { ifTable 1 }

IfEntry ::=

 SEQUENCE {

 ifIndex

 INTEGER,

 ifDescr

 DisplayString,

 ifType

 INTEGER,

 }

ifIndex OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "A unique value for each interface."

 ::= { ifEntry 1 }
www.d i g i . c om Q Q Q Q Q Q Q 27

Conve r t i ng a n SNMP M IB i n t o C code
ifDescr OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "A textual string containing a description."

 ::= { ifEntry 2 }

ifType OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Identifies the type of interface."

 ::= { ifEntry 3 }

MIBMAN creates a definition for a structure that represents individual rows in
the table:

typedef struct

{

INT32 ifIndex;

MAN_OCTET_STRING_TYPE ifDescr;

INT32 ifType;

} IfEntryType;

Integration with the management API

MIBMAN creates an array of manVarType objects with one element for each scalar
object and table defined in the MIB. You can suppress entries for virtual objects.

By default, MIBMAN sets the fields in the manVarType structure for each MIB
variable, as shown in this table:

Field Description

id Set to the objects’s OID expressed as a string.

varPointer Set to NULL by default.

isFunction Set to 0 by default.

size Set to the size of the variable in bytes.

type Set to indicate the variable’s type.
2 8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
Implementing traps

Traps are messages sent to SNMP consoles and SNMP agents when a predefined
event occurs. The MIB definition specifies the content of trap messages, but not
the events that trigger them. To support traps, you must implement code that
detects when a trap event occurs and calls functions in the SNMP agent to create a
trap message and send it.

MIBMAN creates an snmpAgentTrapType structure for each trap defined in the MIB.
The structure contains information about the trap that is needed to construct the
trap message.

The snmpAgentTrapType structure is defined in this way:

typedef struct

{

char *name;

char *id;

int trapNumber;

int trapType;

int variableCount;

snmpAgentTrapVarType *varList;

} snmpAgentTrapType;

dimensions Set to NULL.

numberDimensions Set to 0.

semaphores Set to NULL by default.

numberSemaphores Set to 0 by default.

rangeFn Loaded with the address of the snmpAgentRangeChecker function if
the variable has a range.

rangeInfo Loaded with the address of an snmpAgentRangeType structure that
describes it, if the variable has a range; otherwise, this field is set
to NULL.

tableInfo Set to NULL if the object is scalar. If the object is a table, this field
points to a manTableInfoType structure with information about it.

callbackFn Set to NULL.

Field Description
www.d i g i . c om Q Q Q Q Q Q Q 29

Conve r t i ng a n SNMP M IB i n t o C code
where:

� id is loaded with the trap’s OID.

� trapNumber is set to the trap number.

� trapType is set to either of these:

– TRAP_TYPE if the trap is an SMI version 1 trap

– NOTIFICATION_TYPE if the trap is an SMI version 2 notification.

� variableCount is loaded with the number of variables in the trap.

� varList is a pointer to a list of variables.

The trap variables are listed in an array of snmpAgentTrapVarType structures. The
snmpAgentTrapVarType structure is defined in this way:

typedef struct

{

 char *id;

 int hintCode;

 char *oid;

 int type;

} snmpAgentTrapVarType;

where:

� id is the ID of the variable (usually its OID).

� hintCode is a value passed to some functions in the Fusion agent to identify
columnar objects in a row.

� oid is the OID of the variable.

� type is a constant defined in ASNI1.H that indicates the data type of the
variable.

MIBMAN configuration file

You can override some of the default values MIBMAN uses through a configuration
file. Here are the naming conventions:

� The MIB that is being processed determines the configuration file’s name.

� MIBMAN converts the MIB module name into legal Windows file names by
changing hyphens and periods in the module name into underscores.
3 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
� The suffix .config is appended.

� If the module name starts with a digit, an underscore is prefixed to the
file name.

For example, assume MIB-II is being compiled. The MIB definition begins with
this statement:

RFC1213-MIB DEFINITIONS::= BEGIN

MIBMAN creates the configuration file name by converting the MIB name RFC1213-
MIB into the file name RFC1213_MIB.config.

If the configuration file does not exist, the default values are used. Otherwise,
MIBMAN opens and reads the file. The file should consist of one or more
configuration statements. Configuration statements take one of two forms:

� keyword value

� keyword OID = value

The configuration file also can have comments, which must start with a semicolon.
Any text after a semicolon is ignored.

Controlling the names of generated files

By default, MIBMAN bases the names of the .c and .h files on the MIB’s name. You
can override these names.

To set the name of the .c and .h files, use these statements:

� Cfilename c-file name

� Hfilename h-file name

� Actionfilename action-file name

where you replace c-file name, h-file name, and action-file name with your
file names.

Overwriting files

Every time you run MIBMAN, it overwrites the definitions C file and the header file
generated for a MIB. However, the action C file contains template code that you
must edit. MIBMAN does not overwrite this file; you must either delete or rename
the action file for MIBMAN to create a new one.
www.d i g i . c om Q Q Q Q Q Q Q 31

Conve r t i ng a n SNMP M IB i n t o C code
Controlling comments in the C and header files

When MIBMAN generates C and header files, it generates comments at the top of
the files. You can set some of the information in these comments through the
configuration options described in this table:

Here is an example:

Author Harry Hu

ModuleName Management Information Base for Network Management

Description This defines second version of the Management Information

Description Base (MIB-II) for use with network management protocols in

Description TCP/IP based internets.

Edit 12/12/99-HH=Original code generated.

Edit 02/20/00-HH=Increased size of IP connect table, added semaphores

Edit 02/20/00-HH=to protect access to all variables.

Edit 03/12/00-HH=Updated with changes to IP stack.

In the example:

� The author field in the C and header files is set to Harry Hu.

� The modulename is set to Management Information Base for Network
Management.

� The description field is divided into three lines of text.

� Three edits are specified with IDs and descriptions.

Option Description

Author author Sets the author listed in the comments of the C and header files.

ModuleName modulename Overrides the module name specified in the MIB.

Description description Sets description information. You can specify any number of
description options.

Edit EditId=text Lets you keep an edit history. You specify an edit ID and text
to go along with it. The edit ID can be up to 14 characters. The
date of the change is a useful ID.

The text component contains a description of the edit. If the
description is longer than one line, it can be extended to any
number of lines by using the same edit ID. All the description
text is inserted into the file.
3 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
Controlling management variables

Suppressing management variables

To prevent MIBMAN from generating a management variable declaration for a MIB
object, use DontCreateVariable.

DontCreateVariable oid

This option is useful if the object is a virtual object or if the management variable
for it has already been defined. MIBMAN always generates action routines for the
object when this option is specified.

Setting global variable prefixes

MibVariablePrefix prefix

AgentVariablePrefix prefix

You can specify prefixes for global variables that MIBMAN creates. Using these
options can help avoid collisions with other global variables in the application.

� MibVariablePrefix — for variables that are related to MIB items

� AgentVariablePrefix — for global variables that are not related to a
specific MIB

Setting the management ID

SetVariableIdentifier oid = identifier

To specify the management API’s identifier for the variable, use the
SetVariableIdentifier option. By default, MIBMAN uses the object’s OID
represented as a character string. You can use this option to specify a different
identifier. For example, this statement sets the identifier of sysDescr to
SystemDescription:

SetVariableIdentifier 1.3.6.1.2.1.1.1 = SystemDescription

Setting index information

SetIndexFunction oid = function

SetIndexInfo oid = info

Management table variables can use complex indexing systems. By default, MIBMAN
creates the variable without an index system, which means rows are read using a
simple numeric index. If this is not sufficient, you can use the SetIndexFunction
and SetIndexInfo options to specify a complex indexing system:
www.d i g i . c om Q Q Q Q Q Q Q 33

Conve r t i ng a n SNMP M IB i n t o C code
� SetIndexFunction sets the name of a function that the management API uses
to index into the table.

� SetIndexInfo sets the name of the buffer passed to the index function.

For example, these statements set the indexing function to tableIndexer, and the
index information to tableIndexInfo:

SetIndexFunction 1.3.6.1.45.65 = tableIndexer

SetIndexInfo 1.3.6.1.45.65 = tableIndexInfo

Setting semaphores

To specify that some or all the variables are to be protected by semaphores, use
the SetGlobalSemaphore and SetSemaphore options.

SetGlobalSemaphore semaphore

SetSemaphore oid = semaphore

� SetGlobalSemaphore sets a semaphore that protects all variables in the MIB.

� SetSemaphore specifies a semaphore that protects a specific MIB.

Configuration files can have any number of GlobalSemaphore and Semaphore
statements; each specifies a single semaphore to use. When MIBMAN generates a
manVarType entry, it loads the semaphores field with a pointer to an array that
contains all the semaphores that have been specified both globally and for the
specific variable.

The Semaphore statement does not override the GlobalSemaphore statement.
Instead, it specifies semaphores that will be used with the variable in addition to
those used for all variables.

Generating action routines

MIBMAN automatically generates action routines for all tables and for virtual scalar
objects. Normally, MIBMAN does not generate action routines for real scalar objects
because these objects can be handled by the agent with generic action routines. In
some cases, it is a good practice to create custom action routines for real scalar
objects when reading or writing them is intended to cause side effects.

To generate templates for these routines, use GenerateWriteActionRoutine and
GenerateReadActionRoutine:

GenerateWriteActionRoutine oid

GenerateReadActionRoutine oid
3 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
For example, if you want to cause MIBMAN to generate a template action routine
that writes the value of a scalar object whose OID is 1.3.6.1.4.1.901.999.1.1.1,
use this option:

GenerateWriteActionRoutine 1.3.6.1.4.1.901.999.1.1.1

Setting accessor functions

The management API usually controls management variables. It is possible,
however, to create variables that are accessed through the API but implemented in
application code. You can do this by specifying an accessor function for the variable
when it is registered with the API.

If you specify an accessor function, the management API does not allocate any
memory for the variable and calls the accessor function when an application tries
access the variable. The accessor function is responsible for implementing reads
and writes to the variable.

To specify that the management variable created for an object should have an
accessor function, use SetAccessorFunction, which takes this form:

SetAccessorFunction oid = function

For example, to assign the accessor function sysDescrFunction to the sysDescr item
in MIB-II, use this option:

AccessorFunction 1.3.6.1.2.1.1.1=sysDescrFunction

Include files

To declare externally defined variables that are used in the definition C file, use
include files. For example, if you use a semaphore, you must define it in an external
module. The Include statement, which specifies the name of a file to include in the
definitions C file, takes this format:

Include filename

where filename specifies the name of the file to include. You can specify any
number of include files.

Controlling the names of constants

MIBMAN defines constants in the header file to represent variable identifiers. By
default, MIBMAN determines the names of the constants by concatenating the
name of the MIB and the name of the variable, with an underscore character
between them.
www.d i g i . c om Q Q Q Q Q Q Q 35

Conve r t i ng a n SNMP M IB i n t o C code
For example, MIBMAN defines a constant named RFC1213_MIB_sysDescr to
represent the ID of the variable sysDescr in RFC1213_MIB.

To set the prefix for identifiers, use the IdentifierPrefix option, which takes this
form:

IdentifierPrefix prefix

where:

prefix specifies the prefix to use.

For example, using the IdentifierPrefix MIBII_ option in the configuration file for
RFC1213_MIB changes the name of RFC1213_MIB_sysDescr to MIBII_sysDescr (and all
other constants, too).

Step 3: Final integration

After you use MIBMAN to generate the C and header fields, use this procedure for
final integration:

1 Edit the code in the template files and implement the missing code.

The missing code is marked with “To Do” comments.

2 Code any index and accessor functions that the MIB variables need.

3 Create and initialize semaphores that protect the variables before the
variables are registered with the management API.

4 Provide code that calls snmpRegisterManagementVariables, which:

– Registers the management variables created for the MIB

– Sets default values for scalar objects (if specified in the MIB)

– Registers the MIB objects with the SNMP agent

5 Provide code to set initial values of MIB objects that do not have default
values defined in the MIB.

6 Provide code to implement traps.

The code must detect when an event occurs, build a trap message, and send it.
MIBMAN will have created data structures in the C file that contains some of the
information needed to generate and send trap messages.
3 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
Writing action routines

This section describes writing action routines for scalar objects and for tables.

Action routines for scalar objects

If a scalar object is represented by a real variable in the management database, it
is usually not necessary to write an action routine for it. MIBMAN defines the
management variable for the object, and the agent uses default action routines to
read and write the variable.

If a scalar object cannot be represented by a variable in the management
database, you need to write action routines to read and write the object. This is
controlled by the DontCreateVariable configuration option. In this case, MIBMAN
generates templates for the read and write action routines. You need to finish
these templates to perform the operations.

For example, assume a MIB variable represents the state of an LED:

� When the variable is read, the LED hardware should be interrogated to
determine the value to return.

� When the variable is written, the LED should be turned on or off.

MIBMAN generates a template read action routine similar to this:

void *mib_LEDRead (struct variable *vp, oid *name, int *length,
int isGet, int *varLen, setMethod *setVar)
{
 void *resultBuffer = NULL;

if (!scalar_handler(vp, name, length, isGet, varLen))
{

return NULL;
 }
/*
* To Do: Read LED(1.3.6.1.4.1.901.999.1.1.1) into a persistent

* buffer, set resultBuffer to point to it, and set
* *varLen to the value's length.
*/

*setVar = vp->writeFn;
return resultBuffer;

}

www.d i g i . c om Q Q Q Q Q Q Q 37

Wr i t i n g a c t i on r o u t i n e s
You need to edit this action routine to determine whether the LED is on or off and
to return a pointer to an integer value (1 or 0) to the SNMP agent. Store the data in
a persistent buffer that is statically allocated or is not freed until after the SNMP
agent sends the reply to the console.

Here is an edited version that does this:

void *mib_LEDRead (struct variable *vp, oid *name, int *length,

 int isGet, int *varLen, setMethod *setVar)

{

 static int LEDState;

 void *resultBuffer = &LEDState;

 if (!scalar_handler(vp, name, length, isGet, varLen))

 {

 return NULL;

 }

 if (LedIsOn())

 {

 LEDState = 1;

 }

 else

 {

 LEDState = 0;

 }

 *setVar = vp->writeFn;

 return resultBuffer;

}

Read action routines also must return a pointer to the write action routine. The
template created by MIBMAN already contains code to do this.
3 8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
MIBMAN creates a template write action routine similar to this:

int agent_sysContactWrite (int actionCode, struct varBind *info)
{

 int result = SNMP_ERR_NOERROR;

 switch (actionCode)
 {

 case SNMP_SET_RESERVE:

 /*

 * Ignore this action code unless you need to

 * allocate memory.

 */

 break;

 case SNMP_SET_COMMIT:

 /*

 * Ignore this action code.

 */

 break;

 case SNMP_SET_ACTION:

 /*

 * To Do: Write code to copy info->setTo into

 * the object.

 */

 break;

 case SNMP_SET_FREE:

 /*

 * To Do: Free any buffers you allocated.

 */

 break;

 case SNMP_SET_UNDO:

 /*

 * To Do: Write code to copy info->val into

 * the object.

 */

 break;

 }

 return result;

}

www.d i g i . c om Q Q Q Q Q Q Q 39

Wr i t i n g a c t i on r o u t i n e s
The SNMP agent breaks the write process into four phases and an undo operation,
which are indicated by the actionCode argument. For scalar objects, the important
phases are:

� The SNMP_SET_ACTION phase, where the new value is written

� The SNMP_SET_UNDO phase, where the original value is restored

The agent provides the value to write in both the SNMP_SET_ACTION and
SNMP_SET_UNDO operations. In the SNMP_SET_ACTION phase, the value is stored
in info->setTo; in the SNMP_SET_UNDO phase, the value is stored in info->val.

This example shows how you could edit the template to change the state of the
LED:

int agent_sysContactWrite (int actionCode, struct varBind *info)

{

 int result = SNMP_ERR_NOERROR;

 switch (actionCode)

 {

 case SNMP_SET_ACTION:

 if (info->setTo.intVal == 0)

 {

 TurnLedOff();

 }

 else

 {

 TurnLedOn();

 }

 break;

 case SNMP_SET_UNDO:

 if (info->val.intVal == 0)

 {

 TurnLedOff();

 }

 else

 {

 TurnLedOn();

 }

 break;

 default:
4 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
 break;

 }

 return result;

}

You may need to create action routines for scalar values that are represented by
management variables. For example, assume a MIB object represents the speed of a
motor. When the value is written, not only does the management variable need to be
changed, but the speed of the motor also should be adjusted. In this case, you can
use GenerateWriteActionRoutine to make MIBMAN generate a write action routine
for the variable, as shown here:

int mib_MotorSpeedWrite (int actionCode, struct varBind *info)

{

 int result = SNMP_ERR_NOERROR;

 if (actionCode == SNMP_SET_ACTION)

 {

 result = snmpWriteObject(info->vp, &info->setTo,
info->setToLen);

 }

 else if (actionCode == SNMP_SET_UNDO)

 {

 result = snmpWriteObject(info->vp, &info->val,
info->valLen);

 }

 return result;

}

The write action routine already updates the management variable. You need
to edit it to set the motor speed to the new value, as shown here:

int mib_MotorSpeedWrite (int actionCode, struct varBind *info)

{

 int result = SNMP_ERR_NOERROR;

 int motorSpeed;

 if (actionCode == SNMP_SET_ACTION)

 {

 result = snmpWriteObject(info->vp, &info->setTo, info->setToLen);
www.d i g i . c om Q Q Q Q Q Q Q 41

Wr i t i n g a c t i on r o u t i n e s
 motorSpeed = info->setTo.intVal;

 }

 else if (actionCode == SNMP_SET_UNDO)

 {

 result = snmpWriteObject(info->vp, &info->val, info->valLen);

 motorSpeed = info->val.intVal;

 }

 if ((result == SNMP_ERR_NOERROR)

 && ((actionCode == SNMP_SET_UNDO) || (actionCode ==
SNMP_SET_ACTION)))

 {

 setMotorSpeed(motorSpeed);

 }

 return result;

}

Action routines for tables

SNMP tables are not fully defined by the MIB. Additional information is included in
comments in the MIB’s RFC.

How the table’s indexing scheme works

The console supplies a table index whenever it accesses a columnar object. The
table index identifies which row in the table is being read or written. Although the
MIB describes the type of index values that are passed, it does not describe how the
values are to be used. That information is described in comments.

Some table indexing systems are very complex and create relationships with other
tables. You need to modify the action routines that MIBMAN creates for tables to
implement the indexing scheme.

How rows are inserted and deleted

If the console has the ability to add and delete elements in the table, the algorithm
for doing this is described in the MIB’s RFC.
4 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
RFC-1903 describes the recommended approach for doing this, but some MIBs may
use different methods.

Because this information is not included in the MIB, MIBMAN always generates
action routine templates for table objects you need to complete. All columnar
objects in a table use the same read and write action routines.

A typical read action routine template for a table looks like this.

void *someTableRead (struct variable *vp, oid *name, int *length,

 int isGet, int *varLen, setMethod *setVar)

{

 void *resultBuffer = NULL;

 manVarType *manInfo = snmpGetVariableInfo(vp);

 MAN_ERROR_TYPE ccode;

 snmpIndexType *snmpIndex = snmpExtractIndices(vp, name, *length,
IS_READ, 13);

 *varLen = 0;

 if (snmpIndex != NULL)

 {

 manTableIndexType manIndex; /* index for management API */

 someTableType *row; /* storage for one row from table*/

 row = (someTableType *) malloc(sizeof(someTableType));

 if (row != NULL)

 {

 memset(row, 0, sizeof(someTableType));

 manIndex.wantExact = isGet;

 if (snmpIndex->isNullIndex)

 {

 manIndex.numericIndex = 0;

 manIndex.snmpIndex = NULL;

 }

 else

 {

 /*

 * The raw SNMP indices are stored in snmpIndex. The

 * algorithm for using these indices should be
www.d i g i . c om Q Q Q Q Q Q Q 43

Wr i t i n g a c t i on r o u t i n e s
 * described somewhere in the MIB's RFC.

 *

 * To Do: Write code to initialize manIndex. For a

 * GET manIndex must be the exact index of the row

 * to read. It must be one past it for a GET-NEXT.

 */

 }

 ccode = snmpReadRow(manInfo, &manIndex, row);

 if (ccode == MAN_SUCCESS)

 {

 resultBuffer = snmpExtractField(vp, row, varLen
NULL);

 /*

 * To Do: Update the index values in snmpIndex to

 * reflect the actual index the row is at. This will

 * be encoded into the name parameter by the call to

 * snmpEncodeIndices.

 */

 memcpy(name, vp->name, vp->namelen * sizeof(WORD32));

 *length = snmpEncodeIndices(vp, name, snmpIndex);

 if (snmpFreeBufferLater(resultBuffer) != SNMP_ERR_NOERROR)

 {

 free(resultBuffer);

 resultBuffer = NULL;

 *varLen = 0;

 }

 }

 snmpFreeOctetStringBuffers(manInfo, row);

 free(row);

 }

 else /* if unable to allocate memory for row buffer */

 {

 resultBuffer = NULL;

 *varLen = 0;
4 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
 }

 snmpFreeIndices(snmpIndex);

 }

 *setVar = vp->writeFn;

 return resultBuffer;

}

The template extracts the table index from the OID and puts it into the local variable
snmpIndex. You must implement the table’s indexing algorithm to convert the index
into one that the management API can use to look up a row. This is indicated by a
comment in the template with a “To Do” note.

After the index is converted into a form that the management API can use, the
table is read into the row buffer. When MIBMAN processes the MIB, it creates a C
structure that represents rows in the table. The row variable is defined as one of
these structures. Once the row is read, the field in the structure that represents
the columnar object being read is extracted from it and copied into a buffer that is
returned to the agent.

If the read was a GET-NEXT operation, the index specified by the console might not
be the actual index of the row that was read. In this case, the function also must
update the OID value passed to it with the new index. The action function must
update snmpIndex to reflect the actual index of the row, and then encode it into
the OID with the snmpEncodeIndices function.

Writing to table elements is more complicated. The SNMP agent breaks the write
operation into five phases that are indicated by the value of the actionCode
argument passed to the write action function.

This table describes the phases:

In this phase The action routine

SNMP_SET_RESERVE Allocates memory or other resources needed to perform the
write operation.

SNMP_SET_COMMIT Copies the value in info->set To to the buffers allocated in
the SNMP_SET_RESERVE phase.

SNMP_SET_ACTION Writes the variable at this point.
www.d i g i . c om Q Q Q Q Q Q Q 45

Wr i t i n g a c t i on r o u t i n e s
This code is an action routine template that writes into a table:

int someTableWrite (int actionCode, struct varBind *info)

{

 int result = SNMP_ERR_NOERROR;

 snmpIndexType *snmpIndex = snmpExtractIndices(info->vp,
info->oid, info->oidLen, IS_WRITE, 13);

 manVarType *manInfo = snmpGetVariableInfo(info->vp);

 manTableIndexType oldIndex;

 static manTableIndexType newIndex;

 static someTableType *row = NULL;

 static int isInsert = 0, didWrite = 0, startedUndo = 0;

 int fieldCode = snmpGetFieldCode(info->vp);

 static int lastActionCode = -1;

 static WORD32 fieldsCommitted[1];

 static WORD32 fieldsUndone[1];

 MAN_ERROR_TYPE ccode;

 /*

 * The raw SNMP indices are stored in snmpIndex. The

 * algorithm for using these indices should be described

 * somewhere in the MIB's RFC.

 *

 * To Do: Write code to initialize oldIndex.

 */

 oldIndex.wantExact = 1; /* always use exact index for writes */

 switch (actionCode)

 {

 case SNMP_SET_RESERVE:

 if (row == NULL)

 {

 row = malloc(sizeof(someTableType));

SNMP_SET_FREE Releases the buffer or other resources previously allocated.

SNMP_SET_UNDO Restores the variable’s original value. The value will be in
info->val.

This phase occurs only if an error is detected.

In this phase The action routine
4 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
 memset(fieldsCommitted, 0, sizeof(fieldsCommitted));

 memset(fieldsUndone, 0, sizeof(fieldsUndone));

 isInsert = 0;

 didWrite = 0;

 startedUndo = 0;

 result = snmpInitRow(manInfo, &oldIndex,
sizeof(someTableType), &isInsert, &row);

 }

 if (result == SNMP_ERR_NOERROR)

 {

 result = snmpAllocateFieldBuffer(actionCode,
info, row);

 }

 break;

 case SNMP_SET_COMMIT:

 result = snmpSetField(actionCode, info, row);

 fieldsCommitted[fieldCode / 32] |= 1 << (fieldCode & 0x1f);

 break;

 case SNMP_SET_ACTION:

 if (lastActionCode == SNMP_SET_COMMIT)

 {

/*

* To Do: The array fieldsCommitted will indicate which

* fields the console has provided values for. Set default

* values for any fields that are missing, and verify that

* the row contains valid data and can be written into

* the table.

*/

 if (isInsert)

 {

 memcpy (&newIndex, &oldIndex, sizeof(newIndex));

 ccode = manInsertSnmpRow(manInfo->id, &newIndex,
row, MAN_TIMEOUT_FOREVER);

 }

 else

 {

 /*

 * To Do: Initialize newIndex to indicate the

 * row’s new position in the table.

 */
www.d i g i . c om Q Q Q Q Q Q Q 47

Wr i t i n g a c t i on r o u t i n e s
 newIndex.wantExact = 1;

ccode = manSetSnmpRow(manInfo->id, &oldIndex, &newIndex, row,

MAN_TIMEOUT_FOREVER);

 }

 if (ccode == MAN_SUCCESS)

 {

 didWrite = 1;

 }

 result = snmpErrorLookup[ccode];

 }

 break;

 case SNMP_SET_FREE:

 if (row != NULL)

 {

 /*

 * Free our buffers. This is only done on the first FREE
call.

 */

 snmpFreeOctetStringBuffers(manInfo, row);

 free(row);

 row = NULL;

 }

 break;

 case SNMP_SET_UNDO:

 if ((row != NULL) && (!startedUndo))

 {

 snmpFreeOctetStringBuffers(manInfo, row);

 free(row);

 row = NULL;

 }

 if (didWrite)

 {

 if (isInsert)

 {

 ccode = manDeleteSnmpRow(manInfo->id, &newIndex,

MAN_TIMEOUT_FOREVER);

 if (ccode != MAN_SUCCESS)

 {

 result = SNMP_ERR_UNDOFAILED;
4 8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
 }

 didWrite = FALSE;

 }

 else

 {

 if (!startedUndo)

 {

 result = snmpInitRow(manInfo, &newIndex,
sizeof(someTableType),

NULL, &row);

 startedUndo = 1;

 }

 if (result == SNMP_ERR_NOERROR)

 {

 result = snmpAllocateFieldBuffer(actionCode, info,
row);

 }

 if (result != SNMP_ERR_NOERROR)

 {

 snmpFreeOctetStringBuffers(manInfo, row);

 free(row);

 row = NULL;

 result = SNMP_ERR_UNDOFAILED;

 break;

 }

 snmpSetField(actionCode, info, row);

 fieldsUndone[fieldCode / 32] |= 1 << (fieldCode & 0x1f);

 if (memcmp(fieldsCommitted, fieldsUndone,
sizeof(fieldsUndone)) == 0)

 {

 ccode = manSetSnmpRow(manInfo->id, &newIndex,
&oldIndex, row,

MAN_TIMEOUT_FOREVER);

 if (ccode != MAN_SUCCESS)

 {

 result = SNMP_ERR_UNDOFAILED;

 }

 snmpFreeOctetStringBuffers(manInfo, row);

 free(row);

 row = NULL;
www.d i g i . c om Q Q Q Q Q Q Q 49

Wr i t i n g a c t i on r o u t i n e s
 startedUndo = 0;

 didWrite = 0;

 }

 }

 }

 break;

 }

 lastActionCode = actionCode;

 snmpFreeIndices(snmpIndex);

 return result;

}

Often, a single request from the console writes several columnar objects in a table.
For example, the console must specify all the columnar objects to insert a new row.
During each phase, the write action routine is called for each columnar object
specified in the request. If a table has five columnar objects, during a write, the
action routine is called five times for the SNMP_SET_RESERVE phase, then five times
for the SNMP_SET_COMMIT phase, and so on.

The template routines that MIBMAN generates, shown next, handle most of the
work for typical tables:

Routine Description

SNMP_SET_RESERVE Allocates a buffer for the row. If the row contains octet strings, the
template code allocates buffers large enough to hold the new values the
console is setting.

The template code also tries to read the row at the index the console
specifies. If successful, the current values for the row is copied into the row
buffer and isInsert is set to FALSE. If there is no row at the index, the
row buffer is zeroed and isInsert is set to TRUE.

SNMP_SET_COMMIT Copies the values for the columnar objects set by the console into the row
buffer.

SNMP_SET_ACTION Inserts the new row into the table if isInsert is set; otherwise, the
existing row at the specified index is updated.

You need to:

� Add code to set default values for fields that are not
set during an insert (including index fields).

� Verify that all required fields have been set by the
console.

� Verify that the row contains valid data.
5 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e M IBMAN U t i l i t y
You must implement this code in table write action routines:

� As with the read action routine, you must implement the table’s index scheme
to encode the SNMP style index oldIndex. If the write can change the index of
the row, you also need to update newIndex with the new index values.

� The console does not necessarily provide values for all the columnar objects in
a row. You must implement code to set default values for any the console
doesn’t provide, and verify that all the required values have been provided.

� You must provide code to verify that the values in the row are valid.

� If rows can be deleted, you must implement the code to do this. Usually, this
is done by changing one of the columnar objects in the row to indicate that
the row is no longer valid. The action routine should detect when this occurs
and delete the row from the table, rather than just update the field value.

SNMP OID and string index values

OIDs and octet string indexes can be encoded in two ways. When
snmpExtractIndices encodes strings and OIDs into snmpIndexType structures, it
always encodes the length of strings into the length field of the
MAN_OCTET_STRING_TYPE that holds the strings, and the length of the OIDs into the
oidLength field of snmpIndexComponent structure.

However, non-implicit OID and octet string indexes have an additional length field
at the beginning of the value. These length fields are considered part of the value
of the string or the OID, and so they change the way in which the values are
ordered.

For example, if May and June were encoded as non-implicit octet string index
values, May would come before June because May has a length of 3, and June has a
length of 4. They could be represented as <3>May, and <4>June. Because 3 comes
before 4, <3>May comes before <4>June. However, when the same strings are
encoded as implicit octet strings, the length byte is dropped so June comes before
May because J comes before M.

SNMP_SET_FREE Frees all allocated buffers.

SNMP_SET_UNDO Either deletes the row, if one was inserted, or restores the row’s original
value.

Routine Description
www.d i g i . c om Q Q Q Q Q Q Q 51

Wr i t i n g a c t i on r o u t i n e s
When the snmpExtractIndices function is used to decode octet string and OID
index values, it encodes implicit values without a length field, but encodes non-
implicit values with the length of the string in the first element of the string. This
sets up the index values so they can be used for comparison as described in the
SNMP RFCs.

The index types are set to either:

� SNMP_STRING_INDEX and SNMP_OID_INDEX if the values are implicit

� SNMP_STRING_INDEX_WITH_LEN and SNMP_OID_INDEX_WITH_LEN if the values are
not implicit

Sometimes MIB designers are not aware of the difference between implicit and non-
implicit index values. They may not expect non-implicit indexes to be affected by
their length. Therefore, it is important to carefully read the MIB’s RFC to determine
what the MIB designer intended.
5 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Using the Advanced Web
Server PBuilder Utility
C H A P T E R 4

This chapter describes the PBuilder utility, which you use to convert HTML Web
pages into usable, compilable C source code.
Q Q Q Q Q Q Q 53

Ove r v i ew
Overview

The Page Builder (PBuilder) utility uses several input files — in particular, Web
content — to generate source files to be used and linked with the rhphttp
Advanced Web Server (AWS).

The utility allows you to use an HTML file as an input source file. You can maintain
or update an HTML page, rerun the PBuilder utility, and recompile the application
program to generate updated images. Working in this way, you can directly edit the
Web page and debug edits with a standard Web browser, rather than update source
code generated from a tool.

The NET+OS API set ships with two Web server libraries:

� Original HTTP server. Uses the HTML-to-C utility to generate C source code,
and works well as a basic server.

� Advanced Web server. Provides HTTP 1.1 compatibility, file upload capability
(based on RFC 1867), file system stub routines, external CGI, use of magic
cookies, and Web content compression.

Using special tags (described in the next section and in the documentation for the
PBuilder utility), you add dynamic content such as option buttons and text boxes
into any style of HTML.

The PBuilder utility

The PBuilder utility converts HTML Web pages into usable, compilable C source
code. The HTML pages are stored as linked lists of smaller data structures that AWS
requires. Digi strongly discourages generating these structures manually. The
structures are complex, and their internal structure is beyond the scope of this
guide.

The PBuilder utility understands special proprietary annotations called comment
tags. The comment tags are within HTML comment syntax, so they have no effect
on the Web page, and they are absent when the page is served by the AWS.
However, comment tags allow you to generate and modify hooks (function stubs)
with the present dynamic content inserted.
5 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
About the Advanced Web Server Toolkit documentation

The Advanced Web Server Toolkit documentation, included on the NET+Works CD,
describes how to annotate HTML Web content with comment tags to pass dynamic
content through the server. The documentation also provides examples.

A portion of the documentation describes the internal workings of the AWS. These
structures and routines are considered private and can be changed at any time. A
section also is included that describes the PBuilder utility and how the phrase
dictionary is used for Web content compression.

Running the PBuilder utility

To run the PBuilder utility from either PBuilder Helper or a DOS prompt, enter:
pbuilder list.bat.

A window that looks similar to this opens:

Directory
list

pbuilder list.bat
command
www.d i g i . c om Q Q Q Q Q Q Q 55

Runn i ng t h e PBu i l d e r u t i l i t y
The PBuilder Helper window shows a directory list followed by a PBuilder execution
and the contents of list.bat. The list.bat file contains all the Web pages used
for the nahttp_pd application. The Web page file (that is, list.bat) needs either a
.bat or .txt extension.

The Web pages within the files are located in the \html directory. The list.bat
file, however, requires the Web pages to be listed with a forward slash; for
example, html/netarm1.htm.

You need these additional files to run the PBuilder utility:

� PbSetUp.txt — Copy this file from the nahttp_pd application directory, and
use it to configure the PBuilder utility.
Do not change this file.

� RpUsrDct.txt — Contains definitions for Web content compression and is used
to generate the RpUsrDct.c and RpUsrDct.h files.
You can update the RpUsrDct.txt file to include common phrases used in
the application’s Web pages.

The output of this PBuilder execution — netarm1.c and netarm1_v.c — is located
in the \html directory and is the source code representation of the Web pages:

� The netarm1.c file contains the linked list structures.
Never update or modify this file.

� The html\netarm1_v.c file contains the stubs used for dynamic content. This
file was copied to the working directory (.\) and fleshed out for this application.

It is good practice to move the v.c file to a different directory. Otherwise, when you
run the PBuilder utility again, the fleshed-out version of the file will be overwritten.

This PBuilder execution also produces the RpPages.c file, which contains a
structure – gRpMasterObjectList – that contains all the application Web pages.

You must compile and link these files for this application:

� pbuilder\html\netarm1.c

� pbuilder\netarm1_v.c

� pbuilder\RpPages.c

� pbuilder\RpUsrDct.c

Because pbuilder\RpUsrDct.h is required, you need to add the \pbuilder\ path
to the build’s include path.
5 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
Linking the application with the PBuilder output files

When you build an application, you include the AWS library in the final link of the
application. You also need to compile and include three additional files in the build:

� security.c

� file.c

� cgi.c

These files are in the appropriate application directory. You can either leave the
files as they are or update them based on Web application requirements.

For examples of overwriting the files, see the nahttp_pd or naficgi sample
applications on the NET+Works 6.3 CD.

security.c file

Using the security.c file, you can add up to eight security realms. You can then use
the realms to password-protect Web pages.

For more information, see the nahttp_pd sample application or the Advanced Web
Server Toolkit documentation for the PBuilder utility.

cgi.c and file.c files

You use the cgi.c and file.c files to handle external CGI and to add or simulate
a file system. The file system method was used for uploading and retrieving the
file used in the naficgi sample application.

For more information about using external CGI, see the naficgi sample
application, the NET+OS online help, or the Advanced Web Server Toolkit
documentation for the PBuilder utility.

Comment tags

The most important component of the PBuilder utility is the comment tags you
insert into the HTML Web pages. You can use comment tags to link dynamic data
fields with the Web page to specific application variables or functions.
www.d i g i . c om Q Q Q Q Q Q Q 57

C rea t i n g Web p age s
The Advanced Web Server Toolkit documentation for the PBuilder utility describes
comment tags in detail. Digi strongly recommends that you carefully review the
nahttp_pd application and read the comment tag section in the PBuilder
documentation.

Each comment tag begins with <!-- RpFormInput... --> and ends with
<!-- RpEnd -->.

The Web content within a comment tag (the HTML between <!- RpFormInput.... -->
and <!-- RpEnd -->) is not used, nor is it required. Digi recommends that you include
the HTML, however, to assist when you create Web pages.

Creating Web pages

The Management API Interface to the Advanced Web Server (MAW) API integrates
the Advanced Web Server and the Management API. You use the MAW API to
construct Web pages that access management variables.

The Advanced Web Server has a built-in way to support a custom interface to
system variables. The interface has been adapted to access variables through the
management API, allowing you to use the standard AWS mechanism for embedding
dynamic data into Web pages.This program demonstrates how to create Web pages
that display and change management variables.

AWS custom variables

AWS allows you to create Web pages that can display the current value of variables
and prompt users for new values. To create these pages, you insert comments in
their HTML pages that have special tags that AWS recognizes. These tags identify
variables to AWS and tell it how to access them.

For example, these HTML comments contain tags that tell AWS to display the
variable Username:

<!-- RpNamedDisplayText Name=Username RpTextType=ASCII RpGetType=Function

RpGetPtr=GetUsername -->

<!-- RpEnd -->
5 8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
The HTML comment starts with the keyword RpNamedDisplayText, which identifies
the HTML comment as an AWS command to insert the current value of a variable
into a Web page.

This table describes the tags:

When AWS encounters this comment, it calls the getUsername function, which
returns an ASCII string that AWS inserts into the Web page. For more information
about using AWS tags, see the Advanced Web Server Toolkit documentation for the
PBuilder utility.

AWS normally accesses variables directly through either pointers or functions that
you write. However, AWS also has a built-in mechanism to support customized
access to variables.

Comment tags that use the custom interface for accessing variables are similar,
with these exceptions:

� You must set the RpGetType and RpSetType tags to Custom.

� The RpGetPtr and RpSetPtr tags are no longer needed. Setting the type tag to
Custom tells AWS to call a customizable routine to get the value of the variable.

Through modifications to the AWS’s customizable routines to access management
variables, AWS and the management API have been integrated. So, for example, if
the variable Username were registered with the management API, the AWS comment
tag to display its value would be:

<!-- RpNamedDisplayText Name=Username RpTextType=ASCII RpGetType=Custom --
>

<!-- RpEnd -->

This tag Tells AWS that

Name=Username The variable is named Username.

RpTextType=ASCII The variable is an ASCII string.

RpGetType=Function A function has been supplied to read the variable.

RpGetPtr=GetUsername The function is named GetUsername.
www.d i g i . c om Q Q Q Q Q Q Q 59

C rea t i n g Web p age s
Data types

This table shows how AWS data types are mapped to management API data types:

Displaying variables

To display the values of management variables in Web pages, use the AWS
RpNamedDisplayText comment tag. The comment tag takes this form:

<!-- RpNamedDisplayText Name=name RpTextType=type RpGetType=Custom-->

<!-- RpEnd -->

where you replace:

� name with the name of the management variable to display.

� type with the AWS type of the variable.

For example, assume that monthString is a character string, yearInt32 is a 32-bit
integer, and dayWord8 is an 8-bit word, and that all the variables have been
registered with the management API. The HTML code to display them would be:

AWS type Management type

ASCII MAN_CHAR

ASCIIExtended MAN_CHAR

ASCIIFixed MAN_CHAR

HEX WORD8

HEXColonForm WORD8

DotForm WORD8

Signed8 INT8

Signed16 INT16

Signed32 INT32

Unsigned8 WORD8

Unsigned16 WORD16

Unsigned32 WORD32
6 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
The date is

<!-- RpNamedDisplayText Name=monthString RpTextType=ASCII RpGetType=Custom
-->

<!-- RpEnd -->

<!-- RpNamedDisplayText Name=dayWord8 RpTextType=Unsigned8
RpGetType=Custom -->

<!-- RpEnd -->

,

<!-- RpNamedDisplayText Name=yearInt32 RpTextType=Signed32
RpGetType=Custom -->

<!-- RpEnd -->

Changing variables

You use HTML forms to prompt users for input. AWS comment tags are embedded
in the HTML form commands to tell AWS how to transfer the user's input into
application variables.

RpFormInput

To prompt users for a numeric value or a string, use the RpFormInput tag. The
format of this tag is:

<!-- RpFormInput TYPE=promptType RpTextType=dataType NAME=name
RpGetType=Custom RpSetType=Custom MaxLength=length Size=size -->

html code

<!-- RpEnd -->

where you replace:

� promptType with the type of prompt for this input field (text, password,
hidden, check box, or option button).

� dataType with the AWS data type for the variable.

� name with the name the variable was registered under.

� length with the maximum length for the variable.

� size with the size of the input field.

For example, this HTML code prompts for a value for maxTemperature, which is a
16-bit integer. The prompt is a 15-character-wide text field.

<!-- RpFormInput TYPE=text RpTextType=Signed16 NAME=maxTemperature
RpGetType=Custom RpSetType=Custom MaxLength=15 Size=15 -->

<!-- RpEnd -->
www.d i g i . c om Q Q Q Q Q Q Q 61

C rea t i n g Web p age s
RpFormTextAreaBuf

Use RpFormTextAreaBuf to prompt users for a string value with a multi-line text box.
Use this form:

<!-- RpFormTextAreaBuf NAME=name RpGetType=Custom RpSetType=Custom
ROWS=height

COLS=width -->

<!-- RpEnd -->

where you replace:

� name with the variable's name

� height with the height of the text box

� width with the width of the text box

For example, this HTML code prompts users with a 4 x 50 text box to enter a new
value for the string postalAddress:

<!-- RpFormTextAreaBuf NAME=postalAddress RpGetType=Custom
RpSetType=Custom ROWS=4

COLS=50 -->

<!-- RpEnd -->

RpFormSingleSelect and RpSingleSelectOption

You can use a select list to prompt for a numeric value to be written into an 8-bit
word using the RpFormSingleSelect and RpSingleSelectOption tags:

� RpFormSingleSelect sets up a select list.

� RpSingleSelectOption sets up individual items in the select list.

RpFormSingleSelect

The RpFormSingleSelect tag has this form:

<!-- RpFormSingleSelect NAME=name RpGetType=Custom RpSetType=Custom
Size=size -->

option list

<!-- RpEnd -->

where you replace:

� name with the variable's name

� size with the number of visible lines in the select list

� option list with a list of RpSingleSelectOption tags
6 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
RpSingleSelectOption

The RpSingleSelectOption tag has this form:

<!-- RpSingleSelectOption value="text label"
RpItemNumber=numericValue -->

<!-- RpEnd -->

where:

� text label is a label for this option.

� numericValue is the corresponding numeric value to be assigned to the
variable if the user selects this option.

The next example sets up a select list that prompts users to choose a day of the
week. The variable dayOfTheWeek is set to a value between 0 and 6, depending on
which day a user chooses.

<!-- RpFormSingleSelect NAME=dayOfTheWeek RpGetType=Custom
RpSetType=Custom Size=7

-->
<!-- RpSingleSelectOption value="Sunday" RpItemNumber=0 -->

<!-- RpEnd -->
<!-- RpSingleSelectOption value="Monday" RpItemNumber=1 -->
<!-- RpEnd -->

<!-- RpSingleSelectOption value="Tuesday" RpItemNumber=2 -->
<!-- RpEnd -->
<!-- RpSingleSelectOption value="Wednesday" RpItemNumber=3 -->

<!-- RpEnd -->
<!-- RpSingleSelectOption value="Thursday" RpItemNumber=4 -->
<!-- RpEnd -->

<!-- RpSingleSelectOption value="Friday" RpItemNumber=5 -->
<!-- RpEnd -->

<!-- RpSingleSelectOption value="Saturday" RpItemNumber=6 -->
<!-- RpEnd -->
<!-- RpEnd -->

Security

The MAW module supports the NET+OS Security API and the security features built
into AWS. AWS allows you to associate a username and password with a group of Web
pages. The combination of the username, password, and list of Web pages is called a
realm. The AWS requires users to supply a username and password whenever they
access any page in the realm. You can create up to eight realms.
www.d i g i . c om Q Q Q Q Q Q Q 63

Con t r o l l i n g t h e MAW modu l e
Exceptional cases

You may need to write special-purpose code to access management variables. In
these cases, you can specify the AWS function type in the comment tags, and then
supply functions to perform the access.

In this example, the functions appGetDate and appSetDate are defined to access
a management variable:

<!-- RpFormInput TYPE=text NAME=dateString RpGetType=Function
RpGetPtr=appGetDate

RpSetType=Function RpSetPtr=appSetDate MaxLength="31" Size="31" -->

<!-- RpEnd -->

Controlling the MAW module

You can configure the MAW module to control:

� The timeout that is used to access management variables

� The array subscripts that are used when accessing management variables that
are arrays

� How error conditions are handled

This table shows the default configuration settings:

Setting the semaphore timeout

Management variables can be protected by one or more semaphores. When the
MAW module accesses a management variable, it specifies the maximum amount of
time it will wait for the semaphores to unlock. By default, the timeout is infinity.

Setting Default action

Semaphore timeout Wait forever for semaphores to unlock.

Array subscripts If the variable is a one-dimensional character array, read or
write the entire variable.

Error handling Halt system on errors.
6 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
Applications change the timeout value with the mawSetAccessTimeoutfunction,
which is defined as:

void mawSetAccessTimeout (MAN_TIMEOUT_TYPE timeout);

The timeout argument specifies the new timeout value.

Applications also can specify different timeouts for each variable. To do so, use
mawInstallTimeoutFunction to register a function that is passed the name of each
variable being accessed and returns the appropriate timeout. This function is
defined as:

void mawInstallTimeoutFunction (mawTimeoutFn appFunction);

The appFunction argument is a pointer to a function supplied by the application
that controls the timeouts used for each variable.

mawTimeoutFn type

The type mawTimeoutFn is defined as:

typedef MAN_TIMEOUT_TYPE (*mawTimeoutFn)(char *varName);

The varName argument specifies the name of the variable being accessed, and the
function returns an appropriate timeout value.

Array subscripts

If Web pages access management variables that are arrays, the application must
register a function to specify the subscripts to use when the arrays are accessed.
You do this by calling the function mawInstallSubscriptsFunction, which is
defined in this way:

void mawInstallSubscriptsFunction (mawSubscriptsFn appFunction);

The appFunction argument is a pointer to the application-supplied function that
determines the subscripts to use.

mawSubscriptsFn type

The mawSubscriptsFn type is defined in this way:

typedef int * (*mawSubscriptsFn)(char *varName, INT16 *indices, int
*dimensions, int numberdimensions, AwsDataType htmlType);
www.d i g i . c om Q Q Q Q Q Q Q 65

Con t r o l l i n g t h e MAW modu l e
where:

� varName is a pointer to the variable being accessed.

� indices is a pointer to an array of integers that are the current loop indices
being used by the HTTP server.

� dimensions is a pointer to an array of integers that specify the dimensions of
the management variable.

� numberDimensions is the number of dimensions the management variable has.

� htmlType is the data type the HTTP server is expecting.

The function must return a pointer to an integer array that contains the subscripts
of the array element to be accessed.

If the variable is an array of characters, the function can return NULL to indicate
that the entire array is to be read or written.

Error handling

Applications can use the mawInstallErrorHandler function to install an error
handler. This function is defined as:

void mawInstallErrorHandler (mawErrorFn appFunction);

The appFunction argument is a pointer to the application's error handler.

mawErrorFn type

The mawErrorFn type is defined in this way:

typedef void * (*mawErrorFn)(char *varName, AwsDataType htmlType,
MAW_ERROR_TYPE error);

where:

� Varname is a pointer to the variable being accessed.

� HtmlType is the data type expected by the HTTP server.

� Error is the error condition that is identified.

The function either halts the system or returns a value that the HTTP server can use.
6 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Us i ng t h e Advanced Web Se r v e r PBu i l d e r U t i l i t y
Building the application

The MAW module is built into a special version of the AWS library. Link your
application against this version of the AWS library.

Phrase dictionaries and compression

The AWS uses a phrase dictionary technique to provide compression for static ASCII
text strings with the HTML Web content. The PBuilder utility uses the RpUsrDct.txt
file as input and builds its data structures to point to common phrases in the
dictionary instead of repeating strings.

This figure shows the content of the RpUsrDct.txt file for the nahttp_pd application:

You add common phrases in all the application Web pages (for example, a company
name that is used several times).

In the sample file, note this definition, which is used several times in the
application Web pages:

C_S_AWS = “Advanced Web Server”

Search the \pbuilder\html\netarm1.c file. The C_S_AWS string is used consistently
throughout the file.
www.d i g i . c om Q Q Q Q Q Q Q 67

Ma i n t a i n i n g and mod i f y i ng Web con t en t
Maintaining and modifying Web content

After you generate application source files, the best way to maintain and update
Web content is through the HTML pages. Digi recommends that you maintain these
files and include them in source control.

If a Web page requires a change or a new page, you can either update the HTML,
add a new page to the list.bat file, or do both. You can add new phrases to the
dictionary at any time.

For the changes to take effect, rerun the PBuilder utility. The application or image
is automatically rebuilt.

Sample applications

Two sample applications are included in the application directory:

� nahttp_pd — This application shows examples of using comment tags,
overwrites the security.c file to use a password-protected page, and shows
an example of the phrase dictionary.

� naficgi — This application shows how a file can be uploaded and served, and
it overwrites the cgi.c and file.c files to external CGI.
6 8 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

Troubleshooting
C H A P T E R 5

This chapter describes how to diagnose some errors you may encounter when
you are working with NET+OS. This chapter also describes how to reserialize a
development board.
Q Q Q Q Q Q Q 69

D i agnos i n g e r r o r s
Diagnosing errors

These sections tell you how to diagnose two types of errors:

� Fatal errors

� Unexpected exceptions

Diagnosing a fatal error

Code in the BSP and NET+OS API libraries calls the customizeErrorHandler routine
when a fatal error is encountered. A fatal error is one from which the software
cannot recover.

The default version of customizeErrorHandler blinks the LEDs on the development
board in a pattern that indicates the type of error that occurred.

To determine where in the code an error occurred:

1 Stop the program in the debugger.

2 Examine the call stack.

The call stack lists each function frame on the stack. To go to any of these
functions, double-click the function name in the call stack display.

3 To continue execution from the point where the error occurred, set the
naCustomizeErrorHandlerClearToContinue variable to 0.

Be aware that because a fatal error has occurred, the results are unpredictable.

Diagnosing an unexpected exception

The customizeExceptionHandler routine is called whenever an unexpected
exception occurs. This table describes the exceptions:

Exception type Triggered when

Data abort Software attempts to access memory that doesn’t exist.

Prefetch abort The processor attempts to fetch an instruction from memory that
doesn’t exist.

Fast interrupt The FIQ pin is toggled by hardware, or when internal devices such as
the watchdog timer in the NET+ARM are programmed to generate it.
7 0 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

T roub l e s hoo t i ng
The value of the BSP_HANDLE_UNEXPECTED_EXCEPTION constant in bsp.h controls the
default version of customizeExceptionHandler. (For details, see the online help.)
Usually, customizeExceptionHandler either resets the unit or blinks the LEDs in a
pattern that indicates the type of exception that occurred. During development, you
can continue execution from where the exception occurred.

To diagnose an unexpected exception:

1 Put a breakpoint on customizeExceptionHandler.

2 When the breakpoint is reached, step into the routine until it sets
customizeExceptionHandlerClearToContinue to TRUE.

3 Set customizeExceptionHandlerClearToContinue to 0.

4 Step through the routine until just before it returns.

5 Switch the debugger display to show assemble instructions.

6 Step through the code assembler instructions one at a time until the processor
returns to the source of the exception.

Reserializing a development board

The NET+Works development board ships with a boot ROM application programmed
in flash ROM. The boot ROM application allows you to configure the board.

Observing the LEDs

Be aware of the amber and green LEDs whenever you power cycle the development
board. The LEDs provide information that allows you to monitor the status of the
board at all times.

Software interrupt The processor executes a software interrupt (SWI) instruction.

Undefined interrupt The processor executes an undefined instruction.

Exception type Triggered when
www.d i g i . c om Q Q Q Q Q Q Q 71

Rese r i a l i z i n g a deve l o pmen t boa r d
Preparing to reserialize

Before you reserialize the development board, start a HyperTerminal session. Keep
the HyperTerminal window open during all your testing.

If your system resources are limited, keep the HyperTerminal window open only
when you power cycle the board.

Assigning a MAC address to the NET+Works board

Each device on the network must have a unique Ethernet media access controller
(MAC) address. The NET+Works development board comes preconfigured with a
factory-set MAC address that is printed on a sticker on the board.

The MAC address can be lost if NVRAM is corrupted by an application under test. In
such a case, you must restore the MAC address to make sure that the board can
communicate over the network. The development board ships with an application
written in flash ROM that you can use to restore the MAC address. From the debugger,
you also can use any sample application built with the configuration dialog enabled.

To restore a board’s original Ethernet MAC address:

1 Connect the board to a serial port on your system.

2 Start a HyperTerminal session on the serial port.

3 Power up the board.

A message similar to this one appears after a brief pause:
NET+WORKS Version 6.3
Copyright (c) 2003, NETsilicon, Inc.

PLATFORM: net50bga_a
APPLICATION: Ram-based FTP Server Application
--

NETWORK INTERFACE PARAMETERS:
IP address on LAN is 1.2.3.4
LAN interface’s subnet mask is 255.255.255.0
IP address of default gateway to other networks is 1.2.3.4

HARDWARE PARAMETERS:
Serial channels will use a baud rate of 9600
This board’s serial number is N99999999
This board’s MAC Address is 00:40:9D:00:43:35
After board is reset, start-up code will wait 5 seconds
Default duplex setting for Ethernet connection: Full Duplex

--

Press any key in 5 seconds to change these settings.
7 2 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

T roub l e s hoo t i ng
4 Enter the configuration dialog by pressing a key before the timeout expires.

5 At the prompt, enter the system password:

Netsilicon

6 Enter the values for the IP stack configuration settings and serial port baud
rate.

7 At the prompt, enter the Ethernet MAC address that appears on the sticker
on the board.

8 Respond to the prompts to set up the remaining configuration settings.

This is a sample dialog:

Enter the root password: **********
Reset configuration to default values (Y/N)? Y

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

NETWORK INTERFACE PARAMETERS:

Should this target obtain IP settings from the network? [N] y

SECURITY PARAMETERS:

Would you like to update the Root Password? [N[

HARDWARE PARAMETERS:

Set the baud rate of Serial channels [9600]?
The new baud rate is 9600

The baud rate will be changed on next power up
Please set the baud rate for your terminal accordingly

Each development board must have a unique serial number

Set the board’s serial number [N99999999]? N12345678
The board’s new serial number is N12345678

Each development board must have a unique Ethernet MAC address.
Set the board’s Ethernet MAC Address [00:40:9D:BA:DB:AD]?

00:40:9D:12:34:56
This board’s new Ethernet MAC address is 00:40:9D:12:34:56

How long (in seconds) should CPU delay before starting up [5]?

Normally the board will automatically negotiate with the network hub (or
switch) to determine the Ethernet duplex setting; however some hubs do not

support autonegotiation.
What duplex setting should be used in this case (Full or Half)? [Full
Duplex]

Saving the changes in NV memory...Done.
www.d i g i . c om Q Q Q Q Q Q Q 73

Res t o r i n g t h e c on t en t s o f f l a sh ROM
Restoring the contents of flash ROM

NET+Works development boards ship with a boot ROM program written in flash
ROM. The boot ROM program implements support for debugging and provides an
FTP server that you can use to update flash ROM.

You restore the original boot ROM program by using a procedure in which you:

1 Configure the target development board and in-circuit emulator (ICE).

2 Build the bootloader image.

3 Build the application image, and build the FTP Flash download program from
the naftpapp application.

4 Send the rom.bin file in your platform directory and the image.bin file in the
naftpapp/32b directory

5 Verify the boot ROM image on the target development board.

6 Verify the application.

The next sections provide details about each step in the procedure.

Note: Be aware that the order of the tasks for restoring the contents of
flash ROM is important. You must do the tasks in the order in which
this document presents them.

Step 1: Configure the development board and the MAJIC

To set up the development board and the MAJIC:

1 Connect the MAJIC as described in the NET+Works Quick Install Guide.

2 Connect target serial port 1 to the communications port of your computer.

3 Power up the target development board.

4 Power up the MAJIC.

5 Disable flash on the board. Depending on the board you are using, you might
disable flash using either a jumper or a switch. For details, see the jumpers
and components guide for the board you are using.

6 Start a HyperTerminal session.
7 4 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

T roub l e s hoo t i ng
Step 2: Building the bootloader

To build the bootloader:

1 Edit bsp.h and make sure the configuration settings are correct.

For information about these settings, see the NET+Works with Green Hills
BSP Porting Guide and the online help.

2 Build your project as shown in “Appendix A, Using Central Build,” in the
NET+Works with Green Hills BSP Porting Guide.

Step 3: Building the application image and starting naftpapp

To build the application image and start the naftpapp application:

1 Prepare the application image.

2 Edit the appconf.h file for naftpapp, and make sure the application is
configured to generate a configuration dialog.

To generate a dialog, set the constant APP_DIALOG_PORT in appconf.h.

For more information about APP_DIALOG_PORT in appconf.h, see the online
help.

3 Rebuild the naftpapp application.

4 Start the debugger and load naftpapp.

5 Start the application.

naftpapp prompts you with the standard NET+OS configuration dialog box
(unless you have disabled this feature).

6 Verify that the network settings are correct, and change them if necessary.

Step 4: Sending rom.bin to the development board

To send rom.bin of the bootloader to the development board:

1 Open a command shell.

2 Change to this directory:

C:/netos63_ghs/src/bsp/your-platform

where you replace your_platform with the name of your platform.
www.d i g i . c om Q Q Q Q Q Q Q 75

Res t o r i n g t h e c on t en t s o f f l a sh ROM
3 To start the Windows FTP client, enter this command and press Enter:

FTP a.b.c.d

and press Enter.

where a.b.c.d is your unit’s IP address.

4 When you are prompted for a username, enter:

(none)

5 To select binary mode transfer, enter:

bin

6 Enter this command:

put rom.bin

7 When the transfer is complete, enter:

quit

8 Exit from the debugger.

Step 5: Verifying the boot ROM image on the development board

At this point, the bootloader has been written into the boot sector of flash. Now
you need to write the application into flash.

To write an application into flash:

1 Build the application you want to write into flash.

2 Restart the naftpapp application in the debugger.

3 Change to this directory:

C:/netos63_ghs/src/examples/naftpapp/32b

4 To start the Windows FTP client, type this command and press Enter:

FTP a.b.c.d

where a.b.c.d is your unit’s IP address.

5 When you are prompted for a username, enter:

(none)

6 To select binary mode transfer, enter:

bin
7 6 Q Q Q Q Q Q Q NET+Works w i t h G r e en H i l l s P r og r amme r ’ s Gu i d e

T roub l e s hoo t i ng
7 Enter this command:

put image.bin

8 When the transfer is complete, enter:

quit

9 Exit from the debugger.
www.d i g i . c om Q Q Q Q Q Q Q 77

Index
Symbols
.gif and .jpeg images as Web content 6

A
accessor functions, setting 35
action routine

called by SNMP agent 23
defined 20
generating 34

action routines 23
Advanced Web Server. See AWS.

agent 23
agent, SNMP 20
APP_DIALOG_PORT constant 75
appconf.h file 75
application samples

naficgi 57, 68
nahttp_pd 57, 68
namib 23

array subscripts and MAW module 64, 65
audio files as Web content 6

AWS 54
and comment tags 61
and custom variables 58
and customizable routines 59
and MAW module 67
data types of 60
function type, specifying 64
phrase dictionary technique 67
security 63
Web content compression 54

B
binary files and the HTML-to-C converter

10
bindata.c file 10, 14
board support package. See BSP.

boot ROM

and restoring contents of flash ROM 74
application 71
image, verifying 76

BSP 3
and NET+OS 3

bsp.h file 71, 75
I - Q Q Q Q Q Q Q I n d e x - 1

C
C code, converting an SNMP MIB into 23
C source files, generating 15
cgi.c file 57, 68
columnar objects 21
comment tags 54, 57-58
comments in C files and header files 32
compression and phrase dictionaries 67
consoles, SNMP 20
constants, controlling names of 35
contents of flash ROM, restoring 74
controlling management variables 33
converting an SNMP MIB into C code 23
converting HTML and related Web pages

to C code 6

D
data abort 70
data types, SNMP 26
default values MIBMAN uses, overriding 30
definition file 25
deleting obsolete data from project file

14
development board

and LEDs 70
reserializing 71
restoring Ethernet MAC address 72
sending rom.bin to 75
verifying boot ROM image on 76

diagnosing errors 70
dictionary, adding new phrases 68
dynamic Web content, defined 7

E
embedded device, incorporating Web

content into 6, 10
error

handler, installing 66
error, fatal 70
Ethernet MAC address, restoring original

72
exceptions

diagnosing 71
types of 70

F
fast interrupt 70
file.c file 57, 68
filename conventions for HTML URL 10
files generated by MIBMAN 25
flash ROM, restoring contents of 74
forms processing Web content, defined 7
function stubs 54

G
generated files and MIBMAN 25
generating

action routines 34
C source file 15

generic action routines 21
getUsername function 59
gif and jpeg images as Web content 6
global variable prefixes, setting 33
I n d e x - 2 Q Q Q Q Q Q Q

H
home page, setting or changing for

project 16
hooks. See function stubs.

HTML

pages as Web content 6
URL, filename conventions for 10

HTML-to-C converter

file types recognized 10
purpose of 6
using 12

HTTP server, setting up security table for
18

HyperTerminal 72, 74

I
implementing traps 29
index information, setting 33
input form 9
integrating Web pages into the Web server

6

J
Java applets as Web content 6
jpeg and gif images as Web content 6

L
LEDs

and troubleshooting 71
observing during power cycle 71

list.bat file 56, 68

M
MAC address

locating on development board 73
restoring to a development board 72

magic cookies 54
maintaining and modifying Web content 68
management API 28
management API ID, setting 33
management variables and semaphores

26
management variables, controlling 33
MAW module

and array subscripts 65
error handling 66
security 63

mawInstallErrorHandler function 66
mawInstallTimeoutFunction function 65
mawSetAccessTimeout routine 65
MIB

action routines 20, 23
and traps 29
converting an SNMP MIB into C code

23
definition file 25
dependencies 24
object identifier 21
objects in tables 21
real objects 20
relationships between tables 22
table index 21
template file 25
traps 22
virtual objects 20
I - Q Q Q Q Q Q Q I n d e x - 3

MIBMAN

and controlling comments in C and
header files 32

and MIB module names 25
and SMICng intermediate files 24
configuration file 30
files generated by 25
include files 35
integration with Management API 28
overwriting files 31
register tables 26

MIBMAN utility 20
Microsoft HyperTerminal 72, 74

N
naficgi sample application 57, 68
naftpapp application 74, 75, 76
nahttp_pb sample application 68
nahttp_pd sample application 57
namib sample application 23
NET+OS

security supported by 63
netarm1.c file 56
netarm1_v.c file 56

O
objects

real 20
scalar 21
virtual 20

observing LEDs during power cycle of
board 71

obsolete data, removing from project file
14

original Ethernet MAC address, restoring
72

overriding MIBMAN default values 30

P
password

for URL, setting 18
PbSetUp.txt file 56
PBuilder Helper

described 54
linking the application 57
PBuilder Web Application Toolkit 55
sample applications 68

phrase dictionaries and compression

example 67
power cycling a board, LEDs and 71
prefetch abort 70
private structures and routines 55
project

creating new 13
defined 12
setting or changing home page of 15

project.gpj file 10
project.jpg file 15

R
real objects 20
removing obsolete data from project file

14
reserializing a development board 71
restoring the contents of flash ROM 74
I n d e x - 4 Q Q Q Q Q Q Q

rom.bin, sending to development board
75

RpFormInput tag 61
RpFormSingleSelect tag 62
RpFormTextAreaBuf tag 62
RpPages.c file 56
RpSingleSelectOption tag 63
RpUsrDct.txt file 56, 67

S
sample applications 57

naficgi 57, 68
nahttp_pd 57, 68
namib 23

scalar object 21
security 63
security realms, defined 57
security table, setting up for HTTP server

18
security.c file 57, 68
semaphore timeout and MAW module 64
semaphores and management variables

26
semaphores, setting 34
Simple Management Network Protocol.

See SNMP.
SMICng 23
SMICng intermediate files and MIBMAN 24
SMICng MIB compiler 23
SNMP

agents and action routines 23
consoles 20
data types 26
defined 20

SNMP_SET_ACTION routine 40, 45, 50
SNMP_SET_COMMIT routine 45, 50
SNMP_SET_FREE routine 46, 51
SNMP_SET_RESERVE routine 45, 50
SNMP_SET_UNDO routine 40, 46, 51
software interrupt 71
static Web content, defined 7
suppressing management variables 33

T
table 21
template file 25
templates for action routines 21
text files and the HTML-to-C converter

10
trap, defined 22
traps

and MIBs 22
implementing 29

types of Web content 6

U
undefined interrupt 71
URL, setting user and password for 18
url.c file 10, 13, 15

V
virtual objects 20
I - Q Q Q Q Q Q Q I n d e x - 5

W
Web content

maintaining and modifying 68
types of 6

Web page

file extensions 56
integrating into the Web server 6

Web server libraries 54
Windows HyperTerminal 72
I n d e x - 6 Q Q Q Q Q Q Q

	Contents
	NET+Works Introduction
	System components
	NET+Works runtime software
	HTML-to-C compiler
	Advanced Web Server (AWS) PBuilder utility
	Address Configuration Executive (ACE)

	System requirements

	Using the HTML-to-C Compiler
	Overview
	Web content
	Static and dynamic content and forms processing
	Preparing to use the HTML-to-C compiler
	How the HTML-to-C compiler works

	Using the HTML-to-C compiler
	Creating a new project
	Removing obsolete data
	Adding or removing source files
	Specifying the location of files
	Generating C source files
	Setting or changing a project’s home page

	Editing URL files
	Opening the url.c file
	Adding and deleting URLs
	Editing a URL
	Setting the user and password of a URL

	Using the MIBMAN Utility
	Overview
	Terms and concepts
	SNMP
	Scalar MIB objects
	MIB tables
	Traps
	Action routines
	Implementing a MIB: an example

	Converting an SNMP MIB into C code
	Step 1: Using SMICng
	Step 2: Using MIBMAN
	Step 3: Final integration

	Writing action routines
	Action routines for scalar objects
	Action routines for tables
	SNMP OID and string index values

	Using the Advanced Web Server PBuilder Utility
	Overview
	The PBuilder utility
	About the Advanced Web Server Toolkit documentation

	Running the PBuilder utility
	Linking the application with the PBuilder output files
	security.c file
	cgi.c and file.c files

	Comment tags
	Creating Web pages
	AWS custom variables
	Data types
	Displaying variables
	Changing variables
	Security
	Exceptional cases

	Controlling the MAW module
	Setting the semaphore timeout
	Array subscripts
	Error handling
	Building the application
	Phrase dictionaries and compression

	Maintaining and modifying Web content
	Sample applications

	Troubleshooting
	Diagnosing errors
	Diagnosing a fatal error
	Diagnosing an unexpected exception

	Reserializing a development board
	Observing the LEDs
	Preparing to reserialize
	Assigning a MAC address to the NET+Works board

	Restoring the contents of flash ROM
	Step 1: Configure the development board and the MAJIC
	Step 2: Building the bootloader
	Step 3: Building the application image and starting naftpapp
	Step 4: Sending rom.bin to the development board
	Step 5: Verifying the boot ROM image on the development board

